欢迎来到莲山文库网!

您当前的位置:

高中数学《二倍角的三角函数》教案

2021-01-12 更新 10莲券

温馨提示:部分文件查看预览时可能会显示错乱或异常,文件下载不会出现此问题,请放心下载。

上一页 下一页

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。

简介:《二倍角的三角函数》 一 .教学目标 【知识与技能目标】 (1)知道二倍角公式。 (2)能够熟练应用二倍角公式解题。 【过程与方法目标】通过对公式的推导及应用,提升动手操作能力, 锻炼思维能力。 【情感态度与价值观目标】通过自主探究的学习过程,增强学习数学 的兴趣,体验学习数学的乐趣,开拓勇于创新的精神。 二、教学重难点 【重点】 (1)二倍角公式的推导。 (2)二倍角公式的应用。 【难点】二倍角公式的综合应用。 三、教学过程 环节一:温故知新,导入新课 教师提问 1:上节课我们学习了正弦,余弦的和角公式,有哪位同学 能够快速正确的说出来? 学生回答:sin(A+B)=sinAcosB+cosAsinB cos(A+B)=...... tan(A+B)=...... 教师提问 2:如果令 A=B,那么正余弦的二倍角公式会怎样变化呢 ? 教师通过引导得出 sin(A+B)=sin2A, cos(A+B)=cos2A,tan(A+B)=tan2A 从而导入今天的新课。 环节二:师生探究,讲授新知 1. 经过同学们自己小组探究且老师总结能够得出正余弦的二倍角公式 为: sin2A=2sinAcosA cos2A=cos2A-sin2A tan2A=2tanA/(1-tan2A) 2.在学生推导出该公式后,引导同学们回顾之前所学习的 sin2A+cos2A=1 这个公式,然后让他们结合余弦的二倍角公式看能否 得出其他的变形式,经过自主探究,提问同学能够得出 cos2A=2cos2A-1=1-2sin2A 环节三:巩固提升,深化新知 通过有层次的例题将今天所学的知识加以联系掌握。 例 1:已知 sinA=5/13,A∈(90°,180°),求 sin2A,cos2A,tan2A 的值。 例 2:求证: (1+sin2A-cos2A)/(1+sin2A+cos2A) =tanA。 例 1 利用题目中 A∈(90°,180°)这一条件设置纠错环节,例 2 采 用不同的证明方法进行讲解,培养学生一题多解的数学思维。 环节四:小结作业 小结:通过提问不同学生这节课有何收获来总结这节课的知识 点。 作业:根据今天所学的二倍角公式及之前的和角公式自己尝试推 导半角公式。 四、板书设计 五、教学反思 二倍角公式是两角和的正弦、余弦及正切公式的推广及特殊化。 进而,公式的推导相当简单,难点在于公式的运用,尤其是逆用及变 形运用,对于学生的思维及能力是相当大的挑战。在授课过程中,应 遵循学生认知规律,才能够有效化解难点。二倍角公式的运用中,其 中余弦公式的变式最多,应用也最广泛,也极易出错。教学中,应通 过不同层次习题培养学生严谨的数学思维。 更多>>

上传用户:好名字308252680 游客

文件页数:3 页

大小:161.70 KB

时间:2021年01月09日

官方客服微信

lianshanwenku

手机浏览

微信公众号

Copyright© 2006-2021 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。