欢迎来到莲山文库网!

您当前的位置:

人教版九年级数学下册28.1锐角三角函数第3课时课件

相关标签:

2020-10-18 更新 5莲券

温馨提示:部分文件查看预览时可能会显示错乱或异常,文件下载不会出现此问题,请放心下载。

上一页 下一页

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。

简介:A B C c b a ┌ 28.1 锐角三角函数 第 3 课时 1 、 能推导并熟记 30° 、 45° 、 60° 角的三角函数值,并能根据这些值说出对应锐角度数; 2 、能熟练计算含有 30° 、 45° 、 60° 角的三角函数的运算式 . A B C ∠ A 的 对边 ∠ A 的 邻边 斜边 思考 两块三角板中有几个不同的锐角?分别求出这几个锐角的正弦值、余弦值和正切值 . 30° 45° 60 ° sinα cosα tanα 仔细观察 , 说说你发现这张表有哪些规律 ? 30° 45° 60° sinα 正弦 cosα 余弦 tanα 正切 1 , 2 , 3 , 3 , 2 , 1 , 3 , 9 , 27 , 弦二切三作分母, 一顶帽子头上戴 . 1 、你能得出互为余角的两个锐角 A 、 B 正切值的关系吗 ? 2 、你能得出一个锐角 A 的正弦值、余弦值和正切值的关系吗 ? 仔细观察右表,回答下面问题 . sinA =cos(90°  ∠A); 一个锐角的正弦值等于这个角余角的余弦值 . cosA =sin(90°  ∠A) 一个锐角的余弦值等于这个角余角的正弦值 . tanA·tan(90°  ∠A)=1 一个锐角的正切值与这个角余角的正切值互为倒数 . 【 例 】 求下列各式的值 . (1) cos 2 60°+sin 2 60° cos²60° 表示( cos60° ) ² ,即 cos60° 的平方 . 【 解析 】 ( 1 ) cos²60°+sin²60° = ( ) ²+ ( ) ² = ÷ -1=0. =1 ; 当 A 、 B 为锐角时,若 A≠B ,则 sinA≠sinB , cosA≠cosB , tanA≠tanB . ( 2 ) 1. (黄冈中考) cos30°= ( ) A . B . C . D . 【 解析 】 选 C. 由三角函数的定义知 cos30°= 2. (荆门中考)计算 的结果等于( ) 【 答案 】 选 B. 3. (眉山中考)如图,已知梯形 ABCD 中, AD∥BC , ∠ B=30° ,∠ C=60° , AD=4 , AB= ,则下底 BC 的长为 __________ . 【 答案 】 10 4. (丹东中考)计算: 【 解析 】 5 . (巴中中考)已知如图所示,在梯形 ABCD 中, AD ∥ BC , AB = AD = DC = 8 ,∠ B = 60° ,连接 AC . ( 1 )求 cos ∠ ACB 的值; ( 2 )若 E , F 分别是 AB , DC 的中点,连接 EF ,求线段 EF 的长 . cos ∠ ACB = cos30°= ∴ EF= =12. 【 解析 】 ( 1 )∵∠ B = 60° , ∴∠ BCD=60° ,又 ∵ AB = AD = DC ∴∠ DAC=∠DCA , ∵ AD∥BC , ∴∠ DAC=∠BCA , ∴∠ DCA=∠BCA ∴∠ ACB=30° ( 2 ) AB = AD = DC = 8 ,∠ ACB=30° , ∴ BC=2AB=16 , ∵ E , F 分别是 AB , DC 的中点, 【 规律方法 】 1. 记住 30° , 45 ° , 60 ° 的特殊值,及推导方式,可以提高计算速度 . 2. 会构造直角三角形,充分利用勾股定理的有关知识结合三角函数灵活运用 . 直角三角形三边的关系 . 直角三角形两锐角的关系 . 直角三角 形 边与角 之 间的关系 . 特殊角 30°,45°,60° 角 的三角函数值 . 互余两角 之 间的三角函数关系 . 同角 之 间的三角函数关系 b A B C a ┌ c ┌ ┌ 30° 60° 45° 45° 更多>>

上传用户:风驰电掣滑板少年三人行 游客

文件页数:16 页

大小:1.26 MB

时间:2019年06月25日

官方客服微信

lianshanwenku

手机浏览

微信公众号

Copyright© 2006-2021 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。