欢迎来到莲山文库网!

您当前的位置:

人教版九年级下册数学28.1锐角三角函数(1)教案

相关标签:

2020-10-18 更新 5莲券

温馨提示:部分文件查看预览时可能会显示错乱或异常,文件下载不会出现此问题,请放心下载。

上一页 下一页

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。

简介:39 年级 九年级 课题 28.1 锐角三角函数(1) 课型 新授 教学媒体 多媒体 教 学 目 标 知识 技能 1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值; 2.能根据已知直角三角形的边长求一个锐角的正弦值. 过程 方法 经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵. 情感 态度 使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证. 教学重点 正确理解正弦(sinA)概念,会根据直角三角形的边长求一个锐角的正弦值 教学难点 理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值. 教 学 过 程 设 计 教学程序及教学内容 师生行为 设计意图 一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt△ABC中,∠C=90°,∠A=30°,若BC=10m,求AB; 3.在Rt△ABC中,∠C=90°,∠A=30°,若BC=20m,求 AB. 二、自主探究 l 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管? 思考:1.如果使出水口的高度为50m,那么需要准备多长的水管? 2.如果使出水口的高度为a m,那么需要准备多长的水管? 结论:直角三角形中,30°角的对边与斜边的比值等于 思考:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少? 结论:直角三角形中,45°角的对边与斜边的比值是 . 探究:从上面两个问题的结论中可知,在Rt△ABC中,∠C=90°, 当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值; 当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值. 这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°, ∠A=∠A′=a,那么有什么关系.你能解释一下吗? 教师引导学生回顾直角三角形性质,学生完成两个铺垫练习. 教师提出问题,引导学生思考,逐步从特殊到一般的理解锐角的正弦概念. 在特殊角的基础上提出一般性问题,教师再次引导学生利用相似三角形知识,得到:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值. 复习直角三角形的性质,在此基础上探究新问题. 让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景. 培养学生从特殊到一般的演绎推理能力. 得到:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值. l 正弦函数概念: 在Rt△BC中,∠C=90,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c. 在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA, 即sinA= 例如,当∠A=30°时,我们有sinA=sin30°= ; 当∠A=45°时,我们有sinA=sin45°= . 例1 如图,在Rt△ABC中, ∠C=90°,求sinA和sinB的值. 三、课堂训练 课本第64页练习. 补充: 1.... 更多>>

上传用户:风驰电掣滑板少年三人行 游客

文件页数:3 页

大小:319.00 KB

时间:2019年06月24日

官方客服微信

lianshanwenku

手机浏览

微信公众号

Copyright© 2006-2021 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。