欢迎进入莲山课件网—有价值的教学资料
您现在的位置:  主站  >> 考试试题 >> 中学数学 >> 高三下册 >> 模拟试题 

2019年高考文科数学真题(全国卷Ⅰ带答案)

【www.5ykj.com - 莲山课件】

绝密★启用前
2019年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 ,则 =
A.2    B.     C.     D.1
2.已知集合 ,则
A.     B.     C.     D.
3.已知 ,则
A.     B.     C.     D.
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ( ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是
 
A.165 cm    B.175 cm    C.185 cm    D.190cm
5.函数f(x)= 在[—π,π]的图像大致为
A.     B.
C.     D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生    B.200号学生    C.616号学生    D.815号学生
7.tan255°=
A.-2-     B.-2+     C.2-     D.2+
8.已知非零向量a,b满足 =2 ,且(a–b) b,则a与b的夹角为
A.     B.     C.     D.
9.如图是求 的程序框图,图中空白框中应填入
 
A.A=     B.A=     C.A=     D.A=
10.双曲线C: 的一条渐近线的倾斜角为130°,则C的离心率为
A.2sin40°    B.2cos40°    C.     D.
11.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=- ,则 =
A.6    B.5    C.4    D.3
12.已知椭圆C的焦点为 ,过F2的直线与C交于A,B两点.若 , ,则C的方程为
A.     B.     C.     D.
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线 在点 处的切线方程为___________.
14.记Sn为等比数列{an}的前n项和.若 ,则S4=___________.
15.函数 的最小值为___________.
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为 ,那么P到平面ABC的距离为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
    满意    不满意
男顾客    40    10
女顾客    30    20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附: .
P(K2≥k)    0.050    0.010    0.001
k    3.841    6.635    10.828
18.(12分)
记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
19.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
 
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
20.(12分)
已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.(12分)
已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径;
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4?4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4?5:不等式选讲](10分)
已知a,b,c为正数,且满足abc=1.证明:
(1) ;
(2) .















2019年普通高等学校招生全国统一考试
文科数学?参考答案
一、选择题
1.C        2.C         3.B        4.B        5.D        6.C
7.D        8.B        9.A        10.D        11.A        12.B
二、填空题
13.y=3x    14.         15.?4        16.
三、解答题
17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为 ,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为 ,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2) .
由于 ,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
18.解:
(1)设 的公差为d.
由 得 .
由a3=4得 .
于是 .
因此 的通项公式为 .
(2)由(1)得 ,故 .
由 知 ,故 等价于 ,解得1≤n≤10.
所以n的取值范围是 .
19.解:
(1)连结 .因为M,E分别为 的中点,所以 ,且 .又因为N为 的中点,所以 .
由题设知 ,可得 ,故 ,因此四边形MNDE为平行四边形, .又 平面 ,所以MN∥平面 .
(2)过C作C1E的垂线,垂足为H.
由已知可得 , ,所以DE⊥平面 ,故DE⊥CH.
从而CH⊥平面 ,故CH的长即为C到平面 的距离,
由已知可得CE=1,C1C=4,所以 ,故 .
从而点C到平面 的距离为 .
 
20.解:
(1)设 ,则 .
当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,故 在 存在唯一零点.
所以 在 存在唯一零点.
(2)由题设知 ,可得a≤0.
由(1)知, 在 只有一个零点,设为 ,且当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,所以,当 时, .
又当 时,ax≤0,故 .
因此,a的取值范围是 .
21.解:(1)因为 过点 ,所以圆心M在AB的垂直平分线上.由已知A在直线 上,且 关于坐标原点O对称,所以M在直线 上,故可设 .
因为 与直线x+2=0相切,所以 的半径为 .
由已知得 ,又 ,故可得 ,解得 或 .
故 的半径 或 .
(2)存在定点 ,使得 为定值.
理由如下:
设 ,由已知得 的半径为 .
由于 ,故可得 ,化简得M的轨迹方程为 .
因为曲线 是以点 为焦点,以直线 为准线的抛物线,所以 .
因为 ,所以存在满足条件的定点P.
22.解:(1)因为 ,且 ,所以C的直角坐标方程为 .
 的直角坐标方程为 .
(2)由(1)可设C的参数方程为 ( 为参数, ).
C上的点到 的距离为 .
当 时, 取得最小值7,故C上的点到 距离的最小值为 .
23.解:(1)因为 ,又 ,故有
 .
所以 .
(2)因为 为正数且 ,故有
 
 
 
=24.
所以 .

相关标签: 高考数学真题
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:[email protected],我们立即下架或删除。
相关内容
热门内容