欢迎进入莲山课件网—有价值的教学资料
您现在的位置:  主站  >> 考试试题 >> 中学历史 >> 初三下册 >> 模拟试题 

2016届第一学期九年级数学期中试题(带答案)

【www.5ykj.com - 莲山课件】

   2015-2016学年度第一学期九年级期中教学质量检测

            数 学 试  题                2015.10
一.选择题
1.有4个命题:①直径相等的两个圆是等圆; ②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是(   )
A.①③       B.①③④      C.①④      D.①
2. .如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )
A.140°      B.125°       C.130°     D.110°
3..如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,则S1与S2的关系是(   )
A. S1>S2      B. S1<S2      C. S1=S2      D.S1≥S2
4..如果正多边形的一个外角等于60°, 那么它的边数为(   )
A. 4          B . 5           C. 6        D. 7
5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于(   )
A.42 °        B.28°         C.21°          D.20°
6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是(   )
A.2cm          B.4cm          C.6cm            D.8cm
                        
       第6题                    第7题                     第10 题
7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为(  )
A.           B.          C.           D.
8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有(   )
A.2个       B.4个        C.5个       D.6个
9.设⊙O的半径为2,圆心O到直线 的距离OP=m,且m使得关于x的方程 有实数根,则直线 与⊙O的位置关系为(   )
A.相离或相切    B.相切或相交    C.相离或相交    D.无法确定
10.如图,把直角△ABC的斜边AC放在定直线 上,按顺时针的方向在直线 上转动两次,使它转到△A2B2C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为(   )
A.      B.      C.        D.
11.(成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(   )
A.12πcm2    B.15πcm2    C.18πcm2    D.24πcm2
                  
       第11题                    第12题                     
12.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为(   )
A.           B.        C.        D.
二。填空题
1.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________ 的包装膜(不计接缝, 取3).
                    
           第1题                                     第2题
2.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.
3.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.
4.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.
                    
  三。解答题
1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE的长.
                                         


2.如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
 (2)求由DG、GE和 所围成的图形的面积(阴影部分).
 

3.如图,以等腰三角形 的一腰 为直径的⊙O交底边 于点 ,交 于点 ,连结 ,并过点 作 ,垂足为 .根据以上条件写出三个正确结论(除 外)是:
(1)___________________________________________________________________________;
(2)___________________________ ________________________________________________;
(3)_____________________________________________________ ______________________.
                                  
4.如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?
                                     
 

5.如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用 表示) .


ABCCCCDBBBBxkb1
  1. 12000  2. 第二种  3. 6cm  4. (2,0)
1.解:(1)证明:连接AD
          ∵AB是⊙O的直径
          ∴∠ADB=90°
          又BD=CD
          ∴AD是BC的垂直平分线
          ∴AB=AC
     (2)连接OD
       ∵点O、D分别是AB、BC的中点
       ∴OD∥AC
       又DE⊥AC
       ∴OD⊥DE
       ∴DE为⊙O的切线
     (3)由AB=AC, ∠BAC=60°知△ABC是等边三角形
       ∵⊙O的半径为5
       ∴AB=BC=10, CD= BC=5
       又∠C=60°
       ∴ .

2.解:(1)∠BFG=∠BGF
       连接OD,∵ OD=OF(⊙O的半径),
       ∴ ∠ODF=∠OFD.
       ∵ ⊙O与AC相切于点D,∴ OD⊥AC
       又∵ ∠C=90°,即GC⊥AC,∴ OD∥GC,
       ∴ ∠BGF=∠ODF.
       又∵ ∠BFG=∠OFD,∴ ∠BFG=∠BGF.
      (2)如图所示,连接OE,则ODCE为正方形且边长为3.
       ∵ ∠BFG=∠BGF,
       ∴ BG=BF=OB-OF= ,
       从而CG=CB+BG= ,
        ∴ 阴影部分的面积=△DCG的面积-(正方形ODCE的面积 - 扇形ODE的面积)
       

3.(1) ,(2)∠BAD=∠CAD,(3) 是 的切线(以及AD⊥BC,弧BD=弧DG等).

  4.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,
    所以圆形凳面的最大直径为25( -1)厘米.
             

  5.扇形OAB的圆心角为45°,纸杯的表面积为44 .
  解:设扇形OAB的圆心角为n°
    弧长AB等于纸杯上开口圆周长:
    弧长CD等于纸杯下底面圆周长:
    可列方程组 ,解得
    所以扇形OAB的圆心角为45°,OF等于16cm
纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即
S纸杯表面积

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。
相关内容
热门内容