欢迎来到莲山课件网!

您当前的位置:

温馨提示:部分文件查看预览时可能会显示错乱或异常,文件下载不会出现此问题,请放心下载。

2.3  函数的单调性(3课时)

2.3  函数的单调性(3课时)

教学目的:理解函数单调性的概念,并能判断一些简单函数的单调性;能利用函数的单调性及对称性作一些函数的图象.

教学重点:函数单调性的概念. 教学难点:函数单调性的证明 教学过程:

第一课时

教学目的:

(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思。

(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间。

(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性。

教学重点:函数的单调性的概念;

教学难点:利用函数单调的定义证明具体函数的单调性。

一、复习引入:

观察 二次函数y=x2 ,函数y=x3的图象,由形(自左到右)到数(在某一区间内,当自变量增大时,函数值的变化情况)(见课件第一页图1,2)

二、讲授新课

⒈ 增函数与减函数

定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

⑴若当 < 时,都有f( )<f( ),则说f(x)在这个区间上是增函数(如图3);

⑵若当 < 时,都有f( )>f( ),则说f(x) 在这个区间上是减函数(如图4).

说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数y= (图1),当x∈[0,+ )时是增函数,当x∈(- ,0)时是减函数.

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

在单调区间上,增函数的图象是上升的,减函数的图象是下降的.

三、讲解例题:

例1 如图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数.

例2 证明函数f(x)=3x+2在R上是增函数.

例3 证明函数f(x)= 在(0,+ )上是减函数.

例4.讨论函数 在(-2,2)内的单调性.

三、练习  课本P59练习1,2

四、作业 课本P60 习题2.3  1,3,4

点评:

+1
0

分享:

文档格式:doc

下载文档
版权申诉 举报

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。

客服服务微信

55525090

手机浏览

微信公众号

Copyright© 2006-2020 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,

如有知识产权人并不愿意我们使用,如果有侵权请立即联系:55525090@qq.com,我们立即下架或删除。