八年级数学上册《与三角形有关的线段》教案

时间:2019-02-01 作者:佚名 教案来源:网络

八年级数学上册《与三角形有关的线段》教案


章来源 莲山 课件 w w
w.5 Y k J.coM

八年级数学上册《与三角形有关的线段》教案

一、情境导入

出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.

教师利用多媒体演示三角形的形成过程,让学生观察.

问:你能不能给三角形下一个完整的定义?
二、合作探究

探究点一:三角形的概念

图中的锐角三角形有(  )

A.2个

B.3个

C.4个

D.5个

解析:(1)以A为顶点的锐角三角形有ABC、ADC共2个;(2)以E为顶点的锐角三角形有EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.

方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.

探究点二:三角形的三边关系

【类型一】 判定三条线段能否组成三角形

以下列各组线段为边,能组成三角形的是(  )

A.2cm,3cm,5cm

B.5cm,6cm,10cm

C.1cm,1cm,3cm

D.3cm,4cm,9cm

解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

【类型二】 判断三角形边的取值范围

一个三角形的三边长分别为4,7,x,那么x的取值范围是(  )

A.3<x<11 B.4<x<7

C.-3<x<11 D.x>3

解析:三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.

方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.

【类型三】 等腰三角形的三边关系

已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.

解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.

解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.

方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.

【类型四】 三角形三边关系与绝对值的综合

若a,b,c是ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.

解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

三、板书设计

三角形的边

1.三角形的概念:

由不在同一直线上的三条线段首尾顺次相接所组成的图形.

2.三角形的三边关系:

两边之和大于第三边,两边之差小于第三边.

本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.


章来源 莲山 课件 w w
w.5 Y k J.coM
点击排行

最新教案

推荐教案

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |