2.2.2双曲线的几何性质练习含解析

作者:佚名 资料来源:网络 点击数:    有奖投稿

2.2.2双曲线的几何性质练习含解析

本资料为WORD文档,请点击下载地址下载
文章来
源莲 山课件 w ww.5 Y
K J.cOm 2.2.2 双曲线的几何性质
课时过关·能力提升
1.双曲线的实轴长,虚轴长,焦距成等差数列, 则它的离心率为(  )
A
解析:因为双曲线的实轴长、虚轴长、焦距成等差数列,所以4b=2a+2c,即a+c=2b,再由a2+b2=c2即可求得离心率e
答案:B
2.双曲线的实轴长与虚轴长之和等于其焦距 0,2),则双曲线的标准方程为(  )
A
C
解析:由方程 a=2,b=2.
∵双曲线的焦点在y轴上,
∴双曲线的标准方程 .
答案:B
3.过点(2,-2)且 =1有公共渐近线的双曲线方程为(  )
A
C
解析:由题意可设双曲线方程 =k(k∈R,且k≠0),又双曲线过点(2,-2),代入即可求得k,从而求出双曲线方程 .
答案:A
4.F1,F2是双曲线C的两个焦点,P是双曲线右支上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为 (  )
A.
解析:△PF1F2为等腰直角三角形,又|PF1|≠|PF2|,
故必有|F1F2|=|PF2|,
即2c c2-2ac-a2=0,
即e2-2e-1=0,解之,得e=
∵e>1,∴e=
答案:A
5.已知双曲线9y2-m2x2=1(m>0)的一个顶点到它的一条渐近线的距离 m=(  )
A.1 B.2 C.3 D.4
解析:双曲线9y2-m2x2=1(m>0),一个顶点 3y-mx=0,由题意, m=4.
答案:D
6.已知双曲 2,焦点与椭 .
解析:∵椭 (4,0),(-4,0),
∴双曲线的焦点坐标也为(4,0),(-4,0),
∴c=4, c2=a2+b2,∴a=2,b2=12,
∴双曲线的方程
∴双曲线的渐近线方程为y= .
答案:(4,0),(-4,0)
7.双曲 .
解析:利用公式y= y=
答案:y=
8.若双曲 2,则k的值是     .
答案:- 31
9.根据以下条件,分别求出双曲线的标准方程.
(1)过点P(3 e
(2)F1,F2是双曲线的左,右焦点,P是双曲线上的一点,∠F1PF2=60° 2.
解:(1)若双曲线的焦点在x轴上, .
由e
由点P(3 , . ②
又a2+b2=c2, ③
由①②③,得a2=1,b
若双曲线的焦点在y轴上, .
同理 a2+b2=c2.解之,得b2= ).
故所求双曲线的标准方程为x .
(2)设双曲线的标准方程 |F1F2|=2c,而e ,得||PF1|-|PF2||=2a=c.
由余弦定理,得(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1|·|PF2|·(1-cos 60°),∴4c2=c2+|PF1|·|PF2|.
 |·|PF2|·sin 60°=1
∴|PF1|·|PF2|=48.
由3c2=48,∴c2=16,得a2=4,b2=12.
∴所求双曲线的标准方程 .
★10.
 
如图所示,已知F1,F2为双曲 a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的渐近线方程.
分析:由于双曲 y= ,可以通过已知解Rt△F1F2P求得.
解:方法一:设F2(c,0)(c>0),P(c,y0)代入方程得y0= |PF2|
在Rt△F1F2P中,∠PF1F2=30°,
∴|F1F2| |,即2c
又∵c2=a2+b2,∴b2=2a2.
故所求双曲线的渐近线方程为y=
方法二:∵在Rt△F1F2P中,∠PF1F2=30°,
∴|PF1|=2|PF2|.
由双曲线的定义知|PF1|-|PF2|=2a,
∴|PF2|=2a.∴|F1F2| |.
∴2c= c2=3a2=a2+b2.
∴2a2=b2.
故所求双曲线的渐近线方程为y=  文章来
源莲 山课件 w ww.5 Y
K J.cOm
相关试题:
没有相关试题

  • 上一个试题:
  • 下一个试题: 没有了
  • 最新试题

    点击排行

    推荐试题

    | 触屏站| 加入收藏 | 版权申明 | 联系我们 |