人教A版高中数学必修一全册同步课时作业(共23套含解析)

作者:佚名 资料来源:网络 点击数:    有奖投稿

人教A版高中数学必修一全册同步课时作业(共23套含解析)

本资料为WORD文档,请点击下载地址下载
文 章来源
莲山 课件 w w w.5Y k J.C om

[课时作业]
[A组 基础巩固]
1.已知集合M={3,m+1},且4∈M,则实数m等于(  )
A.4         B.3
C.2  D.1
解析:由题设可知3≠4,
∴m+1=4,
∴m=3.
答案:B
2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是(  )
A.梯形  B.平行四边形
C.菱形  D.矩形
解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.
答案:A
3.集合{x∈N+|x-3<2}用列举法可表示为(  )
A.{0,1,2,3,4}  B.{1,2,3,4}
C.{0,1,2,3,4,5}  D.{1,2,3,4,5}
解析:∵x-3<2,∴x<5,又∵x∈N+,∴x=1,2,3,4.
答案:B
4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为(  )
A.5  B.4
C.3  D.2
解析:利用集合中元素的互异性确定集合.
当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素个数为3.
答案:C
5.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为(  )
A.2个  B.3个
C.4个  D.5个
解析:确定集合中元素的个数,应从集合中元素的互异性入手考虑.若是相同的元素,则在集合中只能出现一次.因为x2=|x|,-3x3=-x,所以当x=0时,这几个数均为0.当x>0时,它们分别是x,-x,x,x,-x.当x<0时,它们分别是x,-x,-x,-x,-x.均最多表示两个不同的数,故所组成的集合中的元素最多有2个.故选A.
答案:A
6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________.
解析:由题设知a≠0,则a+b=0,a=-b,所以ba=-1,∴a=-1,b=1,
故b-a=2.
答案:2
7.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.
解析:由-5∈{x|x2-ax-5=0}得(-5)2-a×(-5)-5=0,所以a=-4,
所以{x|x2-4x+4=0}={2},所以集合中所有元素之和为2.
答案:2
8.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.
解析:∵P+Q={a+b|a∈P,b∈Q},P={0,2,5}, Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11.
∴P+Q={1,2,3,4,6,7,8,11},故P+Q中有8个元素.
答案:8
9.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.
解析:(1)当k=0时,原方程变为-8x+16=0,x=2.
此时集合A={2}.
(2)当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根.
只需Δ=64-64k=0,即k=1.
此时方程的解为x1=x2=4,集合A={4},满足题意.
综上所述,实数k的值为0或1.当k=0时,A={2};
当k=1时,A={4}.
10.已知集合A含有两个元素a-3和2a-1,
(1)若-3∈A,试求实数a的值;
(2)若a∈A,试求实数a的值.
解析:(1)因为-3∈A,
所以-3=a-3或-3=2a-1.
若-3=a-3,则a=0.
此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1.
此时集合A含有两个元素-4,-3,符合题意,综上所述,满足题意的实数
a的值为0或-1.
(2)因为a∈A,
所以a=a-3或a=2a-1.
当a=a-3时,有0=-3,不成立.
当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上知a=1.
[B组 能力提升]
1.有以下说法:
①0与{0}是同一个集合;
②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};
③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};
④集合{x|4<x<5}是有限集.
其中正确说法是(  )
A.①④  B.②
C.②③  D.以上说法都不对
解析:0∈{0};方程(x-1)2(x-2)=0的解集为{1,2};集合{x|4<x<5}是无限集;只有②正确.
答案:B
2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是(  )
A.-1∈P  B.-2∈P
C.0∈P  D.2∈P
解析:(1)a>0,b>0时,x=a|a|+b|b|=1+1=2;
(2)a<0,b<0时,x=a|a|+b|b|=-1-1=-2;
(3)a,b异号时,x=0.
答案:A
3.已知集合M={a|a∈N,且65-a∈N},则M=________.
解析:5-a整除6,故5-a=1,2,3,6,a∈N所以a=4,3,2.
答案:{4,3,2}
4.当x∈A时,若x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,所有孤立元素组成的集合称为“孤星集”,则集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.
解析:由“孤立元素”的定义知,对任意x∈A,要成为A的孤立元素,必须是集合A中既没有x-1,也没有x+1,因此只需逐一考查A中的元素即可.0有1“相伴”,1,2则是前后的元素都有,3有2“相伴”,只有5是“孤立的”,从而集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为{5}.故填{5}.
答案:{5}
5.已知集合A={x|ax2+2x+1=0,a∈R}.
(1)若1∈A,求a的值;
(2)若集合A中只有一个元素,求实数a组成的集合;
(3)若集合A中含有两个元素,求实数a组成的集合.
解析:(1)因为1∈A,所以a×12+2×1+1=0,
所以a=-3.
(2)当a=0时,原方程为2x+1=0,
解得x=-12,符合题意;
当a≠0时,方程ax2+2x+1=0有两个相等实根,
即Δ=22-4a=0,所以a=1.
故当集合A只有一个元素时,实数a组成的集合是{0,1}.
(3)由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,
即a≠0且Δ=22-4a>0,
所以a≠0且a<1.
故当集合A中含有两个元素时,实数a组成的集合是{a|a≠0且a<1}.
6.设S是由满足下列条件的实数所构成的集合:
①1∉S;②若a∈S,则11-a∈S.
请解答下列问题:
(1)若2∈S,则S中必有另外两个数,求出这两个数;
(2)求证:若a∈S,且a≠0,则1-1a∈S.
解析:(1)∵2∈S,2≠1,∴11-2=-1∈S.∵-1∈S,-1≠1,∴11--1=12∈S.
又∵12∈S,12≠1,∴11-12=2∈S.∴集合S中另外两个数为-1和12.
(2)由a∈S,则11-a∈S,可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.∴若a∈S,且a≠0,则1-1a∈S.

 

[课时作业]
[A组 基础巩固]
1.(2016•高考全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=(  )
A.{1}        B.{1,2}
C.{0,1,2,3}  D.{-1,0,1,2,3}
解析:B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},又A={1, 2,3},所以A∪B={0,1,2,3}.
答案:C
2.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=(  )
A.∅  B.{x|x<-12}
C.{x|x>53}  D.{x|-12<x<53}
解析:S={x|2x+1>0}={x|x>-12},T={x|3x-5<0}={x|x<53},则S∩T={x|-12<x<53}.
答案:D
3.已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y=0,x,y∈R},则集合A∩B的元素个数是(  )
A.0  B.1
C.2  D.3
解析:解方程组x+y=0,x-y=0,x=0,y=0.∴A∩B={(0,0)}.
答案:B
4.设集合M={x∈Z|-10≤x≤-3},N={x∈Z||x|≤5},则M∪N中元素的个数为(  )
A.11  B.10
C.16  D.15
解析:先用列举法分别把集合M,N中的元素列举出来,再根据并集的定义写出M∪N.∵M={x∈Z|-10≤x≤-3}={-10,-9,-8,-7,-6,-5,-4,-3},N={x∈Z||x|≤5}={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴M∪N={-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5}.∴M∪N中元素的个数为16.
答案:C
5.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则(  )
A.-3≤m≤4  B.-3<m<4
C.2<m<4  D.2<m≤4
解析:∵A∪B=A,∴B⊆A.又B≠∅,
∴m+1≥-2,2m-1≤7m+1<2m-1即2<m≤4.
答案:D
6.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.
解析:由M={0,1,2},知N={0,2,4},
M∩N={0,2}.
答案:{0,2}
7.已知集合A={(x,y)|y=ax+3},B={(x,y)|y=3x+b},A∩B={(2,5)},则a=________,b=________.
解析:∵A∩B={(2,5)}.
∴5=2a+3.∴a=1.
∴5=6+b.∴b=-1.
答案:1 -1
8.若集合A={1,3,x},集合B={x2,1},且A∪B={1,3,x},则这样的x值的个数为________.
解析:∵A∪B=A,∴B⊆A,∴x2∈A.
令x2=3,得x=±3,符合要求.
令x2=x,得x=0或x=1.
当x=1时,不满足集合中元素的互异性.
∴x=±3或x=0.
答案:3
9.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.
解析:如图所示:
 
A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.
A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.
10.已知集合A={x|x2+x-6=0},B={x|mx+1=0},若B⊆A,求实数m的取值范围.
解析:由x2+x-6=0,得A={-3, 2},∵B⊆A,且B中元素至多一个,
∴B={-3},或B={2},或B=∅.
(1)当B={-3}时,由(-3)m+1=0,得m=13;
(2)当B={2}时,由2m+1=0,得m=-12;
(3)当B=∅时,由mx+1=0无解,得m=0.
∴m=13或m=-12或m=0.
[B组 能力提升]
1.定义A-B={x|x∈A且x∉B},若A={1,2,4,6,8,10},B={1,4,8},则A-B=(  )
A.{4,8}  B.{1,2,6,10}
C.{2,6,10}  D.{1}
解析:由题设信息知A-B={2,6,10}.
答案:C
2.(2016•高考全国卷Ⅰ)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=(  )
A.-3,-32    B.-3,32
C.1,32     D.32,3
解析:∵x2-4x+3<0,∴1<x<3,∴A={x|1<x<3}.
∵2x-3>0,∴x>32,∴B=xx>32.
∴A∩B={x|1<x<3}∩xx>32=x32<x<3.
故选D.
答案:D
3.已知集合A={x||x+2|<3},集合B={x|m<x<2},且A∩B=(-1,n),则m=________,n=________.
解析:A={x||x+2|<3}={x|-5<x<1},
 
由图形直观性可知m=-1,n=1.
答案:-1 1
4.已知A={x|-2<x<a+1},B={x|x≤-a或x≥2-a},A∪B=R,则实数a的取值范围是________.
解析:本题给出了两个待定的集合,且已知A∪B=R,结合数轴表示可求出参数a的取值范围.如图所示,因为A∪B=R,所以应满足-a≥-2,2-a≤a+1,解得a≤2,a≥12,所以12≤a≤2.
答案:a12≤a≤2
5.设方程x2+px-12=0的解集为A,方程x2+qx+r=0的解集为B,且A≠B,A∪B={-3,4},A∩B={-3},求p,q,r的值.
解析:∵A∩B={-3},
∴-3∈A,代入
x2+px-12=0得p=-1,
∴A={-3,4}
∵A≠B,A∪B={-3,4},
∴B={-3}
即方程x2+qx+r=0
有两个相等的根x=-3,
∴q=6,r=9.
6.已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,求实数a、m的值或范围.
解析:x2-3x+2=0得x=1或2,故A={1,2},∵A∪B=A,
∴B⊆A,B有四种可能的情况:∅,{1},{2},{1,2}.
∵x2-ax+a-1=(x-1)[x-(a-1)]
∴必有1∈B,因而a-1=1或a-1=2,解得a=2或a=3.
又∵A∩C=C,∴C⊆A.故C有四种可能的情况:∅,{1},{2},{1,2}.
①若C=∅,则方程x2-mx+2=0(※)的判别式
Δ=m2-8<0,得-22<m<22;
②若C={1},则方程(※)有两个等根为1,
∴1+1=m1×1=2不成立;
③若C={2},同上②也不成立;
④若C={1,2},则1+2=m,1×2=2.得m=3.
综上所述,有a=2或a=3;m=3或-22<m<22.

 

[课时作业]
 [A组 基础巩固]
1.已知M={1,2,3,4},N={2,3},则有(  )
A.M⊆N         B.NM
C.N∈M  D.M=N
解析:由子集的概念可知NM.
答案:B
2.已知集合A={1,3,m},B={1,m},若B⊆A,则m=(  )
A.0或3  B.0或3
C.1或3  D.0或1或3
解析:(1)m=3,此时A={1,3,3},B={1,3},满足B⊆A.
(2)m=m,即m=0或m=1.
①m=0时,A={0,1,3},B={0,1},满足B⊆A;
②m=1时,A={1,3,1},B={1,1},不满足互异性,舍去.
答案:B
3.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是(  )
A.1  B.-1
C.-1或0或1  D.0或1
解析:由题设可知集合A中只有一个元素,
(1)a=0时,原方程等价转化为2x=0,即x=0,满足题设;
(2)a≠0Δ=4-4a2=0得a=±1.
答案:C
4.已知集合A={x|x=k2+14,k∈Z},集合B={x|x=k4+12,k∈Z},则A与B的关系为(  )
A.AB  B.BA
C.A=B  D.以上答案都不对
解析:对两集合中的限制条件通分,使分母相同.观察分子的不同点及其关系.
集合A中:x=k2+14=2k+14;
集合B中:x=k4+12=k+24;
而{2k+1}表示奇数集,{k+2}表示整数集,
∴AB.
答案:A
5.满足{x|x2+1=0}A⊆{x|x2-1=0}的集合A的个数是(  )
A.1  B.2
C.3  D.4
解析:{x|x2+1=0}=∅,{x|x2-1=0}={-1,1},故集合A是集合{-1,1}的非空子集,所以A的个数为22-1=3.故选C.
答案:C
6.已知集合M={(x,y)|x+y<0,且xy>0},集合P={(x,y)|x<0,且y<0},那么集合M与P之间的关系是________.
解析:M中的元素满足x+y<0xy>0,即x<0y<0,∴M=P.
答案:M=P
7.已知集合A={x||x|≤2,x∈R},B={x|x≥a},且A⊆B,则实数a的取值范围是________.
解析:因为A={x||x|≤2,x∈R}={x|-2≤x≤2,x∈R},B={x|x≥a},A⊆B,所
以a≤-2.
答案:a≤-2
8.已知集合A{1,2,3},且A中至多有一个奇数,则所有满足条件的集合A为________.
解析:集合A是集合{1,2,3}的真子集,且A中至多有一个奇数,那么当集合A中有0个奇数时,集合A=∅,{2};当集合A中有1个奇数时,集合A={1},{3},{1,2},{2,3}.综上,A=∅,{1},{2},{3},{1,2},{2,3}.
答案:∅,{1},{2},{3},{1,2},{2,3}
9.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.
解析:A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A.
①若B=∅,则m+1>2m-1,解得m<2,
此时有B⊆A;
②若B≠∅,则m+1≤2m-1,即m≥2,
由B⊆A,得m≥2m+1≥-2,2m-1≤5
解得2≤m≤3.
由①②得m≤3.
∴实数m的取值范围是{m|m≤3}.
10.已知集合M={a-3,2a-1,a2+1},N={-2,4a-3,3a-1},若M=N,求实数a的值.
解析:因为M=N,所以(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a-1),即a2-4a+3=0,解得a=1或a=3.当a=1时,M={-2,1,2},N={-2,1,2},满足M=N;当a=3时,M={0,5,10},N={-2,9,8},不满足M=N,舍去.故所求实数a的值为1.
[B组 能力提升]
1.集合A={x|x=(2n+1)π,n∈N}与B={x|x=(4n±1)π,n∈N}之间的关系是(  )
A.AB  B.BA
C.A=B  D.不确定
解析:对于集合A,当n=2k时,x=(4k+1)π,k∈N;当n=2k+1时,x=[4(k+1)-1]π=(4m-1)π,m∈N,其中m=k+1.所以A中的元素形如(4k±1)π,k∈N.
答案:C
2.定义集合A*B={x|x∈A,且x∉B},若A={1,2,3,4,5},B={2,4,5},则A*B的子集个数为(  )
A.1  B.2
C.3  D.4
解析:由题意知A*B={1,3},∴A*B的子集个数为22=4个.
答案:D
3.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.
解析:∵y=(x-1)2-2≥-2,
∴M={y|y≥-2}.∴NM.
答案:NM
4.定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B}.若A={1,2,3},B={1,2},则集合A*B中的最大元素为________,集合A*B的所有子集的个数为________.
解析:当x1=1时,x1+x2的值为2,3;
当x1=2时,x1+x2的值为3,4;
当x1=3时,x1+x2的值为4,5;
∴A*B={2,3,4,5}.
故A*B中的最大元素为5,所有子集的个数为24=16.
答案:5 16
5.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.
解析:A={-2,4},因为B⊆A,所以B=∅,{-2},{4},{-2,4}.
若B=∅,则a2-4(a2-12)<0,即a2>16,解得a>4或a<-4.
若B={-2},则(-2)2-2a+a2-12=0且Δ=a2-4(a2-12)=0,解得a=4.
若B={4},则42+4a+a2-12=0且Δ=a2-4(a2-12)=0,
此时a无解;
若B={-2,4},则-a=4-2,a2-12=-2×4.
所以a=-2.
综上知,所求实数a的集合为{a|a<-4或a=-2或a≥4}.
6.已知集合A={x|x2-3x-10≤0},
(1)若B⊆A,B={x|m-6≤x≤2m-1,m为常数},求实数m的取值范围;
(2)若A⊆B,B={x|m-6≤x≤2m-1,m为常数},求实数m的取值范围;
(3)若A=B,B={x|m-6≤x≤2m-1,m为常数},求实数m的取值范围.
解析:(1)由A={x|x2-3x-10≤0},得A={x|-2≤x≤5}.
∵B⊆A,∴①若B=∅,则m-6>2m-1,即m<-5,此时满足B⊆A;
②若B≠∅,
则m-6≤2m-1,-2≤m-6,2m-1≤5,解得-5≤m≤3.
由①②可得,m<-5或-5≤m≤3.
(2)若A⊆B,则依题意应有
2m-1>m-6,m-6≤-2,2m-1≥5,解得m>-5,m≤4,m≥3,故3≤m≤4.
(3)若A=B,则必有m-6=-2,2m-1=5,此方程组无解,即不存在m的值使得A=B.

 

 

文 章来源
莲山 课件 w w w.5Y k J.C om
相关试题:
没有相关试题

  • 上一个试题:
  • 下一个试题: 没有了
  • 最新试题

    点击排行

    推荐试题

    | 触屏站| 加入收藏 | 版权申明 | 联系我们 |