湖南师大附中2017-2018高一下学期数学期末试卷(含答案)

作者:佚名 资料来源:网络 点击数:    有奖投稿

湖南师大附中2017-2018高一下学期数学期末试卷(含答案)

本资料为WORD文档,请点击下载地址下载
文章
来源莲山
课 件 w w w.5y K J.Co m

湖南师大附中2017-2018学年度高一第二学期期末考试
数 学
命题:柳 叶  审题:谭泽仁
时量:120分钟 满分:150分
得分:____________

第Ⅰ卷(满分100分)
一、选择题:本大题共11个小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的.
                        

1.若a,b,c是平面内任意三个向量,λ∈R,下列关系式中,不一定成立的是
A.a+b=b+a  B.λ(a+b)=λa+λb
C.(a+b)+c=a+(b+c)  D.b=λa
2.下列命题正确的是
A.若a、b都是单位向量,则a=b
B.若AB→=DC→,则A、B、C、D四点构成平行四边形
C.若两向量a、b相等,则它们是起点、终点都相同的向量
D.AB→与BA→是两平行向量
3.cos 12°cos 18°-sin 12°sin 18°的值等于
A.32  B.12  C.-12  D.-32
4.函数f(x)=tan x1+tan2x的最小正周期为
A.π4  B.π2  C.π  D.2π
5.设a,b是非零向量,则下列不等式中不恒成立的是
A.|a+b|≤|a|+|b|  B.|a|-|b|≤|a+b|
C.|a|-|b|≤|a|+|b|  D.|a|≤|a+b|
6.函数f(x)=Asin(ωx+φ)A,ω,φ为常数,A>0,ω>0,|φ|<π2的部分图象如图所示,则f(π)=
 
A.-22  B.62  C.22  D.-62
7.如图,角α、β均以Ox为始边,终边与单位圆O分别交于点A、B,则OA→•OB→=
 
A.sin(α-β)  B.sin(α+β)
C.cos(α-β)  D.cos(α+β)
8.已知π4<α<π2,且sin α•cos α=310,则sin α-cos α的值是
A.-105  B.105  C.25  D.-25
9.已知α∈0,π2,cosπ6+α=13,则sin α的值等于
A.22-36  B.22+36  C.26-16  D.-26-16
10.将函数y=3sin 2x+π3的图象向右平移π2个单位长度,所得图象对应的函数
A.在区间π12,7π12上单调递减
B.在区间π12,7π12上单调递增
C.在区间-π6,π3上单调递减
D.在区间-π6,π3上单调递增
11.设O是平面上一定点,A、B、C是该平面上不共线的三点,动点P满足OP→=OA→+λAB→AB→•cos B+AC→AC→•cos C,λ∈0,+∞,则点P的轨迹必经过△ABC的
A.外心  B.内心  C.重心  D.垂心
答题卡
题 号 1 2 3 4 5 6 7 8 9 10 11 得 分
答 案            
二、填空题:本大题共3个小题,每小题5分,共15分.
12.已知直线x=π4是函数f(x)=sin(2x+φ)的图象上的一条对称轴,则实数φ的最小正值为________.
13.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.
14.已知AB→⊥AC→,AB→•AC→=1.点P为线段BC上一点,满足AP→=AB→AB→+AC→4AC→.若点Q为△ABC外接圆上一点,则AQ→•AP→的最大值等于________.
三、解答题:本大题共3个小题,共30分.
15.(本小题满分8分)
已知5sin α-cos αcos α+sin α=1.
(1)求tan α的值;
(2)求tan2a+π4的值.
 
16.(本小题满分10分)
已知向量a=(2sin α,1),b=1,sinα+π4 .
(1)若角α的终边过点(3,4),求a•b的值;
(2)若a∥b,求锐角α的大小.
 
17.(本小题满分12分)
已知函数f(x)=sinπ2-xsin x-3cos2x.
(1)求f(x)的最小正周期和最大值;
(2)讨论f(x)在π6,2π3上的单调性.
 
第Ⅱ卷(满分50分)
一、填空题:本大题共2个小题,每小题6分.
18.两等差数列{an}和{bn},其前n项和分别为Sn、Tn,且SnTn=7n+2n+3,则a2+a20b7+b15等于________.
19.设函数f(x)=(x+1)2+sin xx2+1的最大值为M,最小值为m,则M+m=________.
二、解答题:本大题共3个小题,共38分,解答应写出文字说明,证明过程或演算步骤.
20.(本小题满分12分)
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值.
 

 

 

 

 

 


 
21.(本小题满分13分)
在四边形ABCD中,AD∥BC,AB=3,∠A=120°,BD=3.
(1)求AD的长;
(2)若∠BCD=105°,求四边形ABCD的面积.
 

 

 

 

 

 

 
22.(本小题满分13分)
已知函数f(x)=x|x-a|+bx(a,b∈R).
(1)当b=-1时,函数f(x)恰有两个不同的零点,求实数a的值;
(2)当b=1时,
①若对于任意x∈[1,3],恒有f(x)x≤2x+1,求a的取值范围;
②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).


湖南师大附中2017-2018学年度高一第二学期期末考试
数学参考答案
一、选择题
题 号 1 2 3 4 5 6 7 8 9 10 11
答 案 D D A C D B C B C B D
1.D 【解析】选项A,根据向量的交换律可知正确;选项B,向量具有数乘的分配律,可知正确;选项C,根据向量的结合律可知正确;选项D,a,b不一定共线,故D不正确.故选D.
2.D 【解析】A.单位向量长度相等,但方向不一定相同,故A不对;B.A、B、C、D四点可能共线,故B不对;C.只要方向相同且长度相等,则这两个向量就相等,与始点、终点无关,故C不对;D.因AB→和BA→方向相反,是平行向量,故D对.故选D.
3.A 【解析】cos 12°cos 18°-sin 12°sin 18°=cos (12°+18°)=cos 30°=32,故选A.
4.C 【解析】函数f(x)=tan x1+tan2x=sin xcos xcos2x+sin2x=12sin 2x的最小正周期为2π2=π,故选C.
5.D 【解析】由向量模的不等关系可得:|a|-|b|≤|a+b|≤|a|+|b|.
|a+b|≤|a|+|b|,故A恒成立.
|a|-|b|≤|a+b|,故B恒成立.
|a|-|b|≤|a+b|≤|a|+|b|,故C恒成立.
令a=(2,0),b=(-2,0),则|a|=2,|a+b|=0,则D不成立.故选D.
6.B 【解析】根据函数的图象A=2.
由图象得:T=47π12-π3=π,
所以ω=2πT=2.
当x=π3时,fπ3=2sin2•π3+φ=0,
∴2π3+φ=kπ,φ=-2π3+kπ.k∈Z.
由于|φ|<π2,取k=1,解得:φ=π3,所以f(x)=2sin2x+π3.
则:f(π)=62,故选B.
7.C 【解析】根据题意,角α,β均以Ox为始边,终边与单位圆O分别交于点A,B,
则A(cos α,sin α),B(cos β,sin β),
则有OA→•OB→=cos αcos β+sin αsin β=cos (α-β);
故选C.
8.B 【解析】∵(sin α-cos α)2=sin 2α-2sin αcos α+cos 2α
=(sin 2α+cos 2α)-2sin αcos α;
又∵sin 2α+cos 2α=1,sin αcos α=310,
∴(sin α-cos α)2=1-2×310=25;
得sin α-cos α=±105;
由π4<α<π2,知22<sin α<1,0<cos α<22,故有sin α-cos α>0,
则sin α-cos α的值是105.故选B.
9.C 【解析】∵α∈(0,π2),∴π6+α∈π6,2π3,
由cosπ6+α=13,得sinπ6+α=1-cos2π6+α=223,
则sin α=sinπ6+α-π6
=sinπ6+αcosπ6-cosπ6+αsinπ6=223×32-13×12=26-16.故选C.
10.B 【解析】将y=3sin2x+π3的图象向右平移π2个单位长度后得到y=3sin2x-π2+π3,即y=3sin2x-2π3的图象,令-π2+2kπ≤2x-2π3≤π2+2kπ,k∈Z,化简可得x∈π12+kπ,7π12+kπ,k∈Z,即函数y=3sin 2x-2π3的单调递增区间为π12+kπ,7π12+kπ,k∈Z,令k=0,可得y=3sin2x-2π3在区间π12,7π12上单调递增,故选B.
11.D 【解析】由题意可得OP→-OA→=AP→=λAB→AB→•cos B+AC→AC→•cos C,
所以AP→•BC→=λAB→•BC→AB→•cos B+AC→•BC→AC→•cos C
=λ-BC→+BC→=0,所以AP→⊥BC→,即点P在BC边的高所在直线上,即点P的轨迹经过△ABC的垂心,故选D.
二、填空题
12.π 【解析】(略)
13.-12 【解析】sin α+cos β=1,
两边平方可得:sin 2α+2sin αcos β+cos 2β=1,①,
cos α+sin β=0,
两边平方可得:cos 2α+2cos αsin β+sin 2β=0,②,
由①+②得:2+2(sin αcos β+cos αsin β)=1,即2+2sin(α+β)=1,
∴2sin(α+β)=-1.
∴sin(α+β)=-12.
 
14.178 【解析】∵AB→⊥AC→,|AB→|•|AC→|=1,建立如图所示坐标系,设B1t,0,C(0,t),AB→=1t,0,AC→=(0,t),AP→=AB→|AB→|+AC→4|AC→|=t1t,0+14t(0,t)=(1,14),∴P(1,14),
∵P为线段BC上一点,∴可设PC→=λPB→,从而有-1,t-14=λ1t-1,-14,即λ1t-1=-1,t-14=-14λ,解之得t=12.
∴B2,0,C0,12.显然P1,14为BC中点,∴点P为△ABC外接圆圆心.Q在△ABC外接圆上,又当AQ过点P时AQ→有最大值为2AP→=172,
此时AP→与AQ→夹角为θ=0°,cos θ=1.∴AP→•AQ→max=172×174=178.
三、解答题
15.【解析】(1)由题意,cos α≠0,由5sin α-cos αcos α+sin α=1,可得5tan α-11+tan α=1,
即5tan α-1=1+tan α,解得tan α=12.(4分)
(2)由(1)得tan 2α=2tan α1-tan2α=43,
tan2α+π4=tan 2α+11-tan 2α=-7.(8分)
16.【解析】(1)角α的终边过点(3,4),∴r=32+42=5,
∴sin α=yr=45,cos α=xr=35;
∴a•b=2sin α+sinα+π4
=2sin α+sin αcosπ4+cos αsinπ4
=2×45+45×22+35×22=322.(5分)
(2)若a∥b,则2sin αsina+π4=1,
即2sin αsin αcosπ4+cos αsinπ4=1,
∴sin 2α+sin αcos α=1,
∴sin αcos α=1-sin 2α=cos 2α,
对锐角α有cos α≠0,
∴tan α=1,
∴锐角α=π4.(10分)
17.【解析】(1)f(x)=sinπ2-xsin x-3cos 2x
=cos xsin x-32(1+cos 2x)
=12sin 2x-32cos 2x-32=sin2x-π3-32,
因此f(x)的最小正周期为π,最大值为2-32.(6分)
(2)当x∈π6,2π3时,0≤2x-π3≤π,从而当0≤2x-π3≤π2,即π6≤x≤5π12时,f(x)单调递增;π2≤2x-π3≤π即512π≤x≤2π3时,f(x)单调递减.
综上可知,f(x)在π6,5π12上单调递增;在5π12,2π3上单调递减.(12分)
18.14924 【解析】a2+a20b7+b15=a1+a21b1+b21=S21T21=14924.
19.2 【解析】可以将函数式整理为f(x)=x2+1+2x+sin xx2+1=1+2x+sin xx2+1,不妨令g(x)=2x+sin xx2+1,易知函数g(x)为奇函数关于原点对称,∴函数f(x)图象关于点(0,1)对称.若x=x0时,函数f(x)取得最大值M,则由对称性可知,当x=-x0时,函数f(x)取得最小值m,因此,M+m=f(x0)+f(-x0)=2.
20.【解析】(1)如图,取PD中点M,连接EM、AM.由于E、M分别为PC、PD的中点,故EM∥DC,且EM=12DC,又由已知,可得EM∥AB且EM=AB,故四边形ABEM为平行四边形,所以BE∥AM.
 
因为PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,从而CD⊥平面PAD,因为AM平面PAD,于是CD⊥AM,又BE∥AM,所以BE⊥CD.(5分)
(2)连接BM,由(1)有CD⊥平面PAD,
得CD⊥PD,而EM∥CD,故PD⊥EM,又因为AD=AP,M为PD的中点,故PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD.所以直线BE在平面PBD内的射影为直线BM,而BE⊥EM,可得∠EBM为锐角,故∠EBM为直线BE与平面PBD所成的角.
依题意,有PD=22,而M为PD中点,可得AM=2,进而BE=2.故在直角三角形BEM中,tan∠EBM=EMBE=ABBE=12,因此sin∠EBM=33.
所以直线BE与平面PBD所成角的正弦值为33.(13分)
21.【解析】(1)∵在四边形ABCD中,
AD∥BC,AB=3,∠A=120°,BD=3.
∴由余弦定理得cos 120°=3+AD2-92×3×AD,
解得AD=3(舍去AD=-23),
∴AD的长为3.(5分)
(2)∵AB=AD=3,∠A=120°,∴∠ADB=12(180°-120°)=30°,又AD∥BC,∴∠DBC=∠ADB=30°.
∵∠BCD=105°,∠DBC=30°,∴∠BDC=180°-105°-30°=45°,△BCD中,由正弦定理得BCsin 45°=3sin 105°,解得BC=33-3.(9分)
从而S△BDC=12BC•BDsin∠DBC=12×(33-3)×3×sin 30°=94(3-1).(10分)
S△ABD=12AB×ADsin A=12×3×3×sin 120°=343.(11分)
∴S=S△ABD+S△BDC=123-94.(13分)
22.【解析】(1)当b=-1时,f(x)=x|x-a|-x=x(|x-a|-1),
由f(x)=0,解得x=0或|x-a|=1,
由|x-a|=1,解得x=a+1或x=a-1.
∵f(x)恰有两个不同的零点且a+1≠a-1,
∴a+1=0或a-1=0,得a=±1.(4分)
(2)当b=1时,f(x)=x|x-a|+x,
①∵对于任意x∈[1,3],恒有f(x)x≤2x+1,
即x|x-a|+xx≤2x+1,即|x-a|≤2x+1-1,
∵x∈[1,3]时,2x+1-1>0,
∴1-2x+1≤x-a≤2x+1-1,
即x∈[1,3]时恒有a≤x+2x+1-1,a≥x-2x+1+1,成立.
令t=x+1,当x∈[1,3]时,t∈[2,2],x=t2-1.
∴x+2x+1-1=t2+2t-2=(t+1)2-3≥(2+1)2-3=22,
∴x-2x+1+1=t2-2t=(t-1)2-1≤0,
综上,a的取值范围是[0,22].(8分)
②f(x)=-x2+ax+x,x≤ax2-ax+x,x>a=-x-a+122+(a+1)24,x≤a,x-a-122-(a-1)24,x>a.
当0<a≤1时,a-12≤0,a+12≥a,
这时y=f(x)在[0,2]上单调递增,
此时g(a)=f(2)=6-2a;
当1<a<2时,0<a-12<a+12<a<2,
y=f(x)在0,a+12上单调递增,在a+12,a上单调递减,在[a,2]上单调递增,
∴g(a)=maxfa+12,f(2),fa+12=(a+1)24,f(2)=6-2a,
而fa+12-f(2)=(a+1)24-(6-2a)=(a+5)2-484,
当1<a<43-5时,g(a)=f(2)=6-2a;
当43-5≤a<2时,g(a)=fa+12=(a+1)24;
当2≤a<3时,a-12<a+12<2≤a,
这时y=f(x)在0,a+12上单调递增,在a+12,2上单调递减,
此时g(a)=fa+12=(a+1)24;
当a≥3时,a+12≥2,y=f(x)在[0,2]上单调递增,
此时g(a)=f(2)=2a-2.
综上所述,x∈[0,2]时,g(a)=6-2a,0<a<43-5(a+1)24,43-5≤a<32a-2,a≥3..(13分)

 

 

文章
来源莲山
课 件 w w w.5y K J.Co m
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |