2.2建立概率模型巩固提升含解析

作者:佚名 资料来源:网络 点击数:    有奖投稿

2.2建立概率模型巩固提升含解析

本资料为WORD文档,请点击下载地址下载
文章
来源莲山
课 件 w w w.5y K J.Co m  
[A 基础达标]
1.下列是古典概型的是(  )
(1)从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;
(2)同时掷两颗骰子,点数和为7的概率;
(3)近三天中有一天降雨的概率;
(4)10个人站成一排,其中甲、乙相邻的概率.
A.(1)(2)(3)(4)      B.(1)(2)(4)
C.(2)(3)(4)   D.(1)(3)(4)
解析:选B.(1)(2)(4)为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而(3)不适合等可能性,故不为古典概型.
2.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为(  )
A.12   B.13
C.38   D.58
解析:选B.该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.
3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为(  )
A.25   B.210
C.310  D.35
解析:选C.从五个人中选取三人有10种不同结果:(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),而甲、乙都当选的结果有3种,故所求的概率为310.
4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为(  )
A.12   B.13
C.14   D.15
解析:选A.从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P=612=12.
5.宇航员小陈从探险的星球上带回绿、蓝、紫3块不同的岩石,儿子想要紫色的岩石,他和儿子开玩笑说,他从袋中每次随机摸出2块岩石,有放回地摸取三次,如果三次恰有两次摸到紫色岩石就把它送给儿子,则儿子能得到紫色岩石的概率为(  )
A.23   B.16
C.2027   D.49
解析:选D.小陈每次从袋中随机摸取2块岩石,有(绿,蓝),(绿,紫),(蓝,紫)三种不同的摸法,分别记为A,B,C,他有放回地摸取三次有(AAA),(AAB),(ABA),(BAA),(AAC),(ACA),(CAA),(BBB),(ABB),(BAB),(BBA),(BBC),(BCB),(CBB),(CCC),(CCB),(CBC),(BCC),(CCA),(ACC),(CAC),(ABC),(ACB),(BCA),(BAC),(CAB),(CBA),共27种不同的摸法,恰有两次摸到紫色的有12种不同的摸法,所以儿子得到紫色岩石的概率P=1227=49.故选D.
6.若以连续掷两颗骰子分别得到的点数m、n作为点P的横、纵坐标,则点P落在圆x2+y2=9内的概率为________.
解析:掷骰子共有36种可能情况,而落在x2+y2=9内的情况有(1,1),(1,2),(2,1),(2,2),共4种,故所求概率P=436=19.
答案:19
7.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},若|a-b|≤1,则称“甲、乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.
解析:数字a,b的所有取法有36种,满足|a-b|≤1的取法有16种,所以其概率为P=1636=49.
答案:49
8.某城市有8个商场A,B,C,D,E,F,G,H和市中心O排成如图所示的格局,其中每个小方格为正方形,某人从网格中随机地选择一条最短路径,欲从商场A前往商场H,则他经过市中心O的概率为________.
 
解析:此人从商场A前往商场H的所有最短路径有A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条,其中经过市中心O的有4条,所以所求概率为23.
答案:23
9.现共有6家企业参与某项工程的竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.
(1)列举所有企业的中标情况;
(2)在中标的企业中,至少有一家来自福建省的概率是多少?
解:(1)从这6家企业中选出2家的选法有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共有15种,以上就是中标情况.
(2)在中标的企业中,至少有一家来自福建省的选法有(A,B),(A,C),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.
则“在中标的企业中,至少有一家来自福建省”的概率为915=35.
10.现有编号分别为1,2,3,4,5的五道不同的政治题和编号分别为6,7,8,9的四道不同的历史题.甲同学从这九道题中一次性随机抽取两道题,每道题被抽到的概率是相等的,用符号(x,y)表示事件“抽到的两道题的编号分别为x,y,且x<y”.
(1)问有多少个基本事件?请列举出来;
(2)求甲同学所抽取的两道题的编号之和小于17但不小于11的概率.
解:(1)共包括36个等可能的基本事件,列举如下:
(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9).
(2)记“甲同学所抽取的两道题的编号之和小于17但不小于11”为事件A,
由第一问可知事件A共包含15个基本事件,列举如下:
(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),
所以P(A)=1536=512.
即甲同学所抽取的两道题的编号之和小于17但不小于11的概率为512.
[B 能力提升]
11.已知A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是(  )
A.29   B.13
C.89   D.1
解析:选C.因为a∈A,b∈A,所以可用列表法得到构成的基本事件总数为9(如下表所示).
  a
b   1 2 3
1 (1,1) (1,2) (1,3)
2 (2,1) (2,2) (2,3)
3 (3,1) (3,2) (3,3)
因为A∩B=B,所以B可能为∅,{1},{2},{3},{1,2},{1,3},{2,3}.
当B=∅时,a2-4b<0,满足条件的a,b为a=1,b=1,2,3;a=2,b=2,3;a=3,b=3.
当B={1}时,满足条件的a,b为a=2,b=1.
当B={2},{3}时,没有满足条件的a,b.
当B={1,2}时,满足条件的a,b为a=3,b=2.
当B={2,3},{1,3}时,没有满足条件的a,b.
综上,符合条件的结果有8种.
所以A∩B=B的概率P=89.
12.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P1,第10个人摸出黑球的概率是P10,则(  )
A.P10=110P1   B.P10=19P1
C.P10=0   D.P10=P1
解析:选D.摸球与抽签是一样的,虽然摸球的顺序有先后,但只需不让后人知道先摸的人摸出的结果,那么各个摸球者摸到黑球的概率是相等的,并不因摸球的顺序不同而影响到其公平性.所以P10=P1.
13.设a是从集合{1,2,3,4}中随机取出的一个数,b是从集合{1,2,3}中随机取出的一个数,构成一个基本事件(a,b).记“这些基本事件中,满足logba≥1”为事件E,则E发生的概率是________.
解析:事件发生包含的事件是分别从两个集合中取两个数字,共有12种结果,满足条件的事件是满足logba≥1,可以列举出所有的事件,当b=2时,a=2,3,4,当b=3时,a=3,4,共有3+2=5个,所以根据古典概型的概率公式得到概率是512.
答案:512
14.(选做题)田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.
(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.
解:(1)比赛配对的基本事件共有6个,它们是:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Ba,Cb),(Ac,Bb,Ca).
经分析:仅有配对为(Ac,Ba,Cb)时,田忌获胜,且获胜的概率为16.
(2)田忌的策略是首场安排劣马c出赛,基本事件有2个:(Ac,Ba,Cb),(Ac,Bb,Ca),配对为(Ac,Ba,Cb)时,田忌获胜且获胜的概率为12.
故正常情况下,田忌获胜的概率为16,获得信息后,田忌获胜的概率为12.
 文章
来源莲山
课 件 w w w.5y K J.Co m
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |