2017年九年级数学上第24圆达标检测卷(人教版有答案)

作者:佚名 资料来源:网络 点击数:    有奖投稿

2017年九年级数学上第24圆达标检测卷(人教版有答案)

本资料为WORD文档,请点击下载地址下载
文 章
来源莲山
课件 w ww.5 y kj.Co m

2017年秋学期山东省莒县人教版九年级24圆达标检测卷
一、选择题(每题3分,共30分)
1.下列命题为真命题的是(  )A.两点确定一个圆  B.度数相等的弧相等
C.垂直于弦 的直径平分弦  D.相等的圆周角所对的弧相等,所对的弦也相等
2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是(  )
A.点P在⊙O外  B.点P在⊙O内  C.点P在⊙O上  D.无法确定
3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是(  )
A.70°  B.60°  C.50°  D.30°
 3 4 5 6 8
4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于(  )A.70°  B.64°  C.62°  D.51°
5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小朋友荡秋千时, 秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为(  )
A.π m  B.2π m  C.43π m  D.43 m
6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为(  )A.12  B.10  C.14  D.15
7.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为(  )A.(2,-1)  B.(2,2)  C.(2,1)  D.(3,1)
8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于(  )A.55°  B.90°  C.110°  D.120°
9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为42,则a的值 是(  )A.4 B.3+2 C.32 D.3+3
 7 9 10 11    
10.如图,正六边形A1B1C1D1E1F1的边长为 2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为(  )A.24329  B.81329  C.8129  D.81328
二、填空题(每题3分,共24分)
11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).    
12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A= ________.
13.如图,DB切⊙O于点A,∠AOM=66°,则∠DAM=________.
14.如图,在⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有_________.
15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________.
 12 13 14 15  16
16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB︵于点E,以点O为圆心,OC的长为半径作CD︵交OB于点D.若OA=2,则阴影部分的面积为________.
17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠AC B=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________.
18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M, N在⊙O上.下列结论:①MC=ND;②AM︵=MN︵=NB︵;③四边形MCDN是正方形;④MN=12AB,其中正确的结 论是________(填序号).
三、解答题(19题6分,20~24题每题12分,共66分)
19.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.试判断直线AC与半圆O的位置关系,并说明理由.
 17 18   19 20
 

20.在直径为20 cm的圆中,有一条弦长 为16 cm,求它所对的 弓形的高.
 


21.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x +b交x轴于点D,且⊙P的半径为5,AB=4.
(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.
  21

22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.
(2)现有一艘宽 60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.
  22
 

23.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA 是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.
  23

24.如图①,AB是⊙ O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;
(2)若AD和⊙O相切于点A,求AD的长;
(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由.
  24


2018春九年级   圆  达标检测卷
一、选择题(每题3分,共30分)1.C 2.A 3.B 4.B 5.B 6.B7.C 8.C 9.B10.D 
1.下列命题为真命题的是(  )A.两点确定一个圆  B.度数相等的弧相等
C.垂直于弦的直径平分弦  D.相等的圆周角所对的弧相等,所对的弦也相等
2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是(  )
A.点P在⊙O外  B.点P在⊙O内  C.点P在⊙O上  D.无法确定
3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是(  )
A.70°  B.60°  C.50°  D.30°
 3 4 5 6 8
4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于(  )A.70°  B.64°  C.62°  D.51°
5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小朋友荡秋千时, 秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为(  )
A.π m  B.2π m  C.43π m  D.43 m
6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为(  )A.12  B.10  C.14  D.15
7.如图,方格纸上一圆经 过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为(  )A.(2,-1)  B.(2,2)  C.(2,1)  D.(3,1)
8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于(  )A.55°  B.90°  C.110°  D.120°
9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为42,则a的值 是(  )A.4 B.3+2 C.32 D.3+3
 7 9 10 11    
10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为(  )A.24329  B.81329  C.8129  D.81328
点拨:∵正六边形A1B1C1D1E1F1的边长为2=(3)1-121-2,∴正六边形A2B2C2D2E2F2的外接圆的半径为3,则正六边形A2B2C2D2E2F2的边长为3=(3)2-122-2,同理,正六边形A3B3C3D3E3F3的边长为32=(3)3-123-2,…,正六边形AnBnCnDnEnFn的边长为(3)n-12n-2,则当n=10时,正六边形A10B10C10D10E10F10的边长为(3)10-1210-2=(3)8•328=34•328=81328,故选D.
二、填空题(每题3分,共24分)
11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).    11.∠BAE=∠C或∠CAF=∠B
12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=________.
12.99° 点拨:易知EB=EC.又∠E=46°,所以∠ECB=67°.从而∠BCD=180°-67°-32°=81°.在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.
13.如图,DB切⊙O于点A,∠AOM=66°,则∠DAM=________.
13.147° 点拨:因为DB是⊙O的切线,所以OA⊥DB.由∠AOM=66°,得∠OAM=12(180°-66°)=57°.所以∠DAM=90°+57°=147°.
14.如图,在⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有_________.
 14.∠6,∠2,∠5 点拨:本题中由弦AB=CD可知AB︵=CD︵,因为同弧或等弧所对的圆周角相等,所以∠1=∠6=∠2=∠5.
15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________.15.48 cm
 12 13 14 15  16
16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB︵于点E,以点O为圆心,OC的长为半径作CD︵交OB于点D.若OA=2,则阴影部分的面积为________.
16.32+π12 点拨:连接OE.∵点C是OA的中点,∴OC=12OA=1.∵OE=OA=2,∴OC=12OE.∵CE⊥OA,∴∠OEC=30°.∴∠COE=60°.在Rt△OCE中,CE=OE2-OC2=3,∴S△OCE=12OC•CE=32.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°.∴S扇形BOE=30π×22360=π3.又S扇形COD =90π×12360=π4.因此S 阴影=S扇形BOE+S△OCE-S扇形COD=π3+32-π4=π12+32.
17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠AC B=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________.17.10.5
18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M, N在⊙O上.下列结论:①MC=ND;②AM︵=MN︵=NB︵;③四边形MCDN是正方形;④MN=12AB,其中正确的结论是________(填序号).
18.①②④ 点拨:连接OM,ON,易证Rt△OMC≌Rt△OND,可得MC=ND,故①正确.在Rt△MOC中,CO=12MO.得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD=∠MON=60°,所以AM︵=MN︵=NB︵,故②正确.易得CD=12AB=OA=OM,∵MC<OM,∴四边形MCDN是矩形,故③错误.易得MN=CD=12AB,故④正确.
三、解答题(19题6分,20~24题每题12分,共66分)
19.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.试判断直线AC与半圆O的位置关系,并说明理由.
 17 18   19 20
19.解:AC与半圆O相切.理由如下:∵BD︵是∠BED与∠BAD所对的弧,
∴∠BAD=∠BED.∵OC⊥AD,∴∠AOC+∠BAD=90°.
∴∠BED+∠AOC=90°.即∠C+∠AOC=90°.
∴∠OAC=90°.∴AB⊥AC,即AC与半圆O相切.
20.在直径为20 cm的圆中,有一条弦长为16 cm,求它所对的 弓形的高.
20.解:∵这条小于直径的弦所对的弧有两条:劣弧与优弧,∴对应的弓形也有两个.
如图,HG为⊙O的直径,且HG⊥AB,AB=16 cm,HG=20 cm,连接BO.
∴OB=OH=OG=10 cm,BC=12AB=8 cm.∴OC=OB2-BC2=102-82=6(cm).
∴CH=OH-OC=10-6=4(cm),CG=OC+OG=6+10=16(cm).
故所求弓形的高为4 cm或16 cm.
21.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x +b交x轴于点D,且⊙P的半径为5,AB=4.
(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.
  21
21.(1)解:如图,连接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,
∴OP2=5-4=1,OP=1.∵BC是⊙P的直径,∴∠CAB=90°.
∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).
(2)证明:∵ 直线y=2x+b过C点,∴b=6.∴y=2x+6.
∵当y=0时,x =-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,
∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.
∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切线.
22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.
(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.
  22
22.解:(1)如图, 点E是桥拱所在圆的圆心.过点E作EF⊥AB于点F,
延长EF交AB︵于点C,连接AE,则CF=20 m.由垂径定理知,F是AB的中点,
∴AF=FB=12AB=40 m.设半径是r m,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50 m .
(2)这艘轮船能顺利通过.理由如下:
当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置.
连接EM,设EC与MN的交点为D,
则DE⊥MN,∴DM=30 m,∴DE=EM2-DM2=502-302=40(m).
∵EF=EC-CF=50-20=30(m),∴DF=DE-EF=40-30=10(m).
∵10 m>9 m,∴这艘轮船能顺利通过.
2 3.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA 是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.
  23
23.(1)证明:如图,连接CD,∵AD是⊙O的直径.∴∠ACD=90°.
∴∠CAD+∠ADC=90°.又∵∠PAC=∠PBA,
∠ADC=∠PBA,∴∠PAC=∠ADC.∴∠CAD+∠PAC=90°.
∴PA⊥DA.而AD是⊙O的直径,∴PA是⊙O的切线.
(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,
∴CF∥PA.∴∠GCA=∠PAC.又∵∠PAC=∠PBA,
∴∠GCA=∠PBA.而∠CAG=∠BAC,
∴△CAG∽△BAC.∴AGAC=ACAB,即AC2=AG•AB.∵AG•A B=12,∴AC2=12.∴AC=23.
(3)解:设AF=x,∵AF∶FD=1∶2,∴FD=2x.∴AD=AF+FD=3x.
在Rt△ACD中,∵CF⊥AD,∴AC2=AF•AD, 即3x2=12,
解得x=2或x=-2(舍去).∴AF=2,AD=6.∴⊙O的半径为3.
在Rt△AFG中 ,AF=2,GF=1,
根据勾股定理得AG=AF2+GF2=22+12=5,由(2)知AG•AB=12,
∴AB=12AG=1255.连接BD,如图.∵AD是⊙O的直径,∴∠ABD=90°.
在Rt△ABD中,∵sin∠ADB=ABAD,AD=6,AB=1255,∴sin∠ADB=255.
∵∠ACE=∠ADB,∴sin∠ACE=255.
24.如图①,AB是⊙ O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;
(2)若AD和⊙O相切于点A,求AD的长;
(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由.
  24
24.(1)证明:如图①,连接OC.∵直线EF和⊙O相切于点C ,
∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA.
∵OA=OC,∴∠BAC=∠OCA.∴∠DAC=∠BAC.
(2)解:∵AD和⊙O相切于点A,∴OA⊥AD.∵AD⊥EF,OC⊥EF,
∴∠OAD=∠ADC=∠OCD=90°.∴四边形OADC是矩形.∵OA=OC,
∴矩形OAD C是正方形.∴AD=OA.∵AB=2OA=10 ,∴AD=OA=5.
(3)解:存在,∠BAG=∠DAC.理由如下:如图②,连接BC.∵AB是⊙O的直径,
∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,
∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.

文 章
来源莲山
课件 w ww.5 y kj.Co m
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |