九年级数学下册第二章二次函数检测试题(北师大有答案)

作者:佚名 资料来源:网络 点击数:    有奖投稿

九年级数学下册第二章二次函数检测试题(北师大有答案)

本资料为WORD文档,请点击下载地址下载
文章
来源莲山
课 件 w w w.5y K J.Co m

2015-1016学年度山东省菏泽市九年级数学下册
第二章  二次函数检测题
一、选择题(每小题3分,共30分)
1.(2015•甘孜州)二次函数y=x2+4x-5的图象的对称轴为(  )
A.x=4, B.x=-4, C.x=2, D.x=-2
2. (2015•荆州)将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为(  )
A.y=(x-1)2+4 B.y=(x-4)2+4 C.y=(x+2)2+6 D.y=(x-4)2+6
3. (2015•乐山)二次函数y=-x2+2x+4的最大值为(  )
A.3,   B.4,     C.5,       D.6
4. (2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是(  )
A. , B. , C. , D.
5.(2014秋•x疆期中)已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A.4,    B.8,     C.-4,        D.16
6.对于函数 ,使得 随 的增大而增大的 的取值范围是(     )
A.x>-1              B.x>0              C.x<0         D.x<-1
7.(2015•兰州中考)二次函数y=a +bx+c的图象如图所示,点C在y轴的正半轴上,且OA=OC,则(  )
A.ac+1=b   B.ab+1=c   C.bc+1=a   D.以上都不是
8.(2015•陕西中考)下列关于二次函数y=a -2ax+1(a>1)的图象与x轴交点的判断,正确的是(  )                                                第7题图
A.没有交点
B.只有一个交点,且它位于y轴右侧
C.有两个交点,且它们均位于y轴左侧
D.有两个交点,且它们均位于y轴右侧
9. (2015•浙江金华中考)图②是图①中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=      - +16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为(   )
  
①                   ②
第9题图
A.16 米           B. 米           C.16 米        D. 米
10.(重庆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对
称轴为直线x= .下列结论中,正确的是(   )
A.abc>0      B.a+b=0
C.2b+c>0      D.4a+c<2b
二、填空题(每小题3分,共24分)
11.(苏州中考)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x 1)2+1的图象上,若x1>x2>1,则y1       y2(填“>”“=”或“<”).
12.(2014•安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为y=        .
13(2015•黑龙江绥化中考)把二次函数y= 的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的表达式是________.
14.(2014•杭州中考)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线的函数表达式为            .
15.(湖北襄阳中考)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x 1.5x2,该型号飞机着陆后需滑行     m才能停下来.
16.设 三点依次分别是抛物线 与 轴的交点以及与 轴的两个交点,则△ 的面积是            .
17.(河南中考)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为            .
18.有一个二次函数的图象,三位同学分别说出了它的一些特点:
甲:对称轴为直线 ;
乙:与 轴两个交点的横坐标都是整数;
丙:与 轴交点的纵坐标也是整数.
请你写出满足上述全部特点的一个二次函数表达式__________________.
三、解答题(共66分)
19.(7分)把抛物线 向左平移2个单位长度,同时向下平移1个单位长度后,恰好与抛物线 重合.请求出 的值,并画出函数的示意图.
20.(7分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军大炮A与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.
(1)求此抛物线的表达式.
(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.
21.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.
22.(8分)已知二次函数y=(t+1)x2+2(t+2)x+ 在x=0和x=2时的函数值相等.
(1)求二次函数的表达式;
(2)若一次函数y=kx+6(k≠0)的图象与二次函数的图象都经过点A( 3,m),求m和k
的值.
23.(8分)(哈尔滨中考)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数表达式(不要求写出自变量x的取值范围).
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?(参考公式:当x= 时,二次函数y=ax2+bx+c(a≠0)有最小(大)值
24.(8分)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐   标系.
(1)求抛物线的表达式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= 9)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行?
25.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.
(1)若花园的面积为192 m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
26.(10分)已知二次函数y=x2-2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点.
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?


2015-1016学年度山东省菏泽市九年级数学下册
第二章   二次函数检测题参考答案
一、选择题
1. D  2.B  3.C  4.C  5.D  6.D  7. A  8.D  9. B  10. D 
二、填空
11.>   解析:∵ a=1>0,对称轴为直线x=1,∴ 当x>1时,y随x的增大而增大.故由x1>x2>1可得y1>y2.
12. a(1+x)2  解析:二月份新产品的研发资金为a(1+x)元,因为每月新产品的研发资金的增长率都相等,所以三月份新产品的研发资金为a(1+x)(1+x)元,即a(1+x)2元.
13. 或 (答出这两种形式中任意一种均得分)
解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的表达式为 .

14.y= x2- x+2或y=- x2+ x+2   解析:由题意知抛物线的对称轴为直线x=1或x=3.
(1)当对称轴为直线x=1时,b=-2a,抛物线经过A(0,2),B(4,3),
∴  解得 ∴ y= x2- x+2.
(2)当对称轴为直线x=3时,b=-6a,抛物线经过A(0,2), B(4,3),
∴  解得 ∴ y=- x2+ x+2.
∴ 抛物线的函数表达式为y= x2- x+2或y=- x2+ x+2.
15. 600   解析:y=60x 1.5x2= 1.5(x 20)2+600,当x=20时,y最大值=600,则该型号飞机着陆时需滑行600 m才能停下来.
16.   解析:令 ,令 ,得 ,
所以 ,
所以△ 的面积是 .
17. 8   解析:因为点A到对称轴的距离为4,且抛物线为轴对称图形,所以AB=2×4=8.
18.   解析:本题答案不唯一,只要符合题意即可,如 
三、解答题
19.解:将 整理,得 .
因为抛物线 向左平移2个单位长度,
再向下平移1个单位长度,得 ,
所以将 向右平移2个单位长度,再向上平移1个单位长度,即得 ,故 ,
所以 .示意图如图所示.
20.解:(1)建立平面直角坐标系,设点A为原点,
则抛物线过点(0,0),(600,0),
从而抛物线的对称轴为直线 .
又抛物线的最高点的纵坐标为1 200,
则其顶点坐标为(300,1 200),
所以设抛物线的表达式为 ,
将(0,0)代入所设表达式,得 ,
所以抛物线的表达式为 .
(2)将 代入表达式,得 ,
所以炮弹能越过障碍物.
21.分析:日利润=销售量×每件利润,每件利润为 元,销售量为[  件,据此得表达式.
解:设售价定为 元/件.
由题意得, ,
∵  ,∴ 当 时, 有最大值360.
答:将售价定为14元/件时,才能使每天所赚的利润最大,最大利润是360元.
22.分析:(1)根据抛物线的对称轴为直线x= =1,列方程求t的值,确定二次函数表达式.
(2)把x= 3,y=m代入二次函数表达式中求出m的值,再代入y=kx+6中求出k的值.
解:(1)由题意可知二次函数图象的对称轴为直线x=1,
则 =1,∴ t= .∴ y= x2+x+ .
(2)∵ 二次函数图象必经过A点,
∴ m= ×( )2+( 3)+ = 6.
又一次函数y=kx+6的图象经过A点,∴  3k+6= 6,∴ k=4.
23.分析:(1)由三角形面积公式S= 得S与x之间的表达式为S= •x(40 x)= x2+20x.
(2)利用二次函数的性质求三角形面积的最大值.
解:(1)S= x2+20x.
(2)方法1:∵ a= <0,∴ S有最大值.
∴ 当x= = =20时,S有最大值为 = =200.
∴ 当x为20 cm时,三角形面积最大,最大面积是200 cm2.
方法2:∵ a= <0,∴ S有最大值.
∴ 当x= = =20时,S有最大值为S= ×202+20×20=200.
∴ 当x为20 cm时,三角形面积最大,最大面积是200 cm2..
点拨:最值问题往往转化为求二次函数的最值.
24.分析:(1)设抛物线的表达式为y=ax2+b(a≠0),将(0,11)和(8,8)代入即可求出a,b;
(2)令h=6,解方程 (t 19)2+8=6得t1,t2,所以当h≥6时,禁止船只通行的时间为
|t2-t1|.
解:(1)依题意可得顶点C的坐标为(0,11),设抛物线表达式为y=ax2+11.
由抛物线的对称性可得B(8,8),
∴ 8=64a+11,解得a= ,∴ 抛物线表达式为y= x2+11.
(2)画出h=  (t-19)2+8(0≤t≤40)的图象如图所示.
当水面到顶点C的距离不大于5米时,
h≥6,当h=6时,解得t1=3,t2=35.
由图象的变化趋势得,禁止船只通行的时间为|t2-t1|=32(小时).
答:禁止船只通行的时间为32小时.
点拨:(2)中求出符合题意的h的取值范围是解题的关键,本题考查了二次函数在实
际问题中的应用.
25.分析:(1)根据矩形的面积公式列出方程x(28-x)=192,解这个方程求出x的值即可.
(2)列出S与x的二次函数表达式,根据二次函数的性质求S的最大值.
解:(1)由AB=x m,得BC=(28-x)m,根据题意,得x(28-x)=192,解得x1=12,x2=16.
答:若花园的面积为192 m2,则x的值为12或16.
(2)S=x(28-x)=-x2+28x=-(x-14)2+196,
因为x≥6,28-x≥15,所以6≤x≤13.
因为a=-1<0,所以当6≤x≤13时,S随x的增大而增大,
所以当x=13时,S有最大值195 m2.
点拨:求实际问题中的最大值或最小值时,一般应该列出函数表达式,根据函数的性质求解.在求最大值或最小值时,应注意自变量的取值范围.
26.分析:(1)求出根的判别式,根据根的判别式的符号,即可得出答案;
(2)先化成顶点式,根据顶点坐标和平移的性质进行解答.
(1)证法1:因为(-2m)2-4(m2+3)=-12<0,
所以方程x2-2mx+m2+3=0没有实数根,
所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.
证法2:因为a=1>0,所以该函数的图象开口向上.
又因为y=x2-2mx+m2+3=(x-m)2+3≥3,
所以该函数的图象在x轴的上方.
所以不论m为何值,该函数的图象与x轴没有公共点.
(2)解:y=x2-2mx+m2+3=(x-m)2+3,
把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),
因此,这个函数的图象与x轴只有一个公共点.
所以把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
点拨:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点与一元二次方程ax2+bx+c=0的根之间的关系.Δ=b2-4ac决定抛物线与x轴的交点个数,当Δ=b2-4ac>0时,抛物线与x轴有2个交点;当Δ=b2-4ac=0时,抛物线与x轴有1个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点.
 

文章
来源莲山
课 件 w w w.5y K J.Co m
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |