六年级下册数学《圆柱的体积》教案苏教版

作者:佚名 教案来源:网络 点击数:    有奖投稿

六年级下册数学《圆柱的体积》教案苏教版

文 章来 源莲山 课件 w w
w.5Y k J.cO m

六年级下册数学《圆柱的体积》教案苏教版

 

教学内容:教材第15~16页的例4和第16页的“试一试”、“练一练”,完成练习三第1~3题。
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想——验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重、难点:掌握圆柱体积公式的推导过程。
教学资源:PPT课件圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1、呈现例4中长方体、正方体和圆柱的直观图。
2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1、观察比较
引导学生观察例4的三个立体,提问:
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2、实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份……)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3、推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积=底面积×高
↓↓↓
圆柱的体积=底面积×高
用字母表示计算公式V=sh
三、分层练习,发散思维,教学“试一试”
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2、做“练一练”第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
第五课时:圆柱体积的练习课
教学内容:练习三第4~9题。
教学目标:
1.通过练习,巩固圆柱的体积公式。
2.让学生在解决简单的实际问题的过程中,进一步理解和掌握圆柱的体积公式。
教学重难点:引导学生把所学的知识运用到实际生活中,并让学生感受到所学的数学知识的应用价值。
教学过程:
一、复习
1、圆柱的体积公式是什么?
2、我们是怎么推导出圆柱的体积公式的?
3、知道哪些条件,我们就能算出圆柱的体积?
二、基本练习
1、做练习三第4题。
⑴猜猜看,哪个杯子里的饮料最多?
⑵算一算,看到底是哪个杯子里的饮料多?
2、算出下面各圆柱的体积。
⑴底面积0.8平方米,高1.2米
⑵半径5厘米,高15厘米
⑶直径6分米,高8分米
练习并指名板演,然后对照板演说说每题的计算过程。
三、讨论实际问题
1、练习三第5题。
说说为什么要从里面量?如果从外面量算出的是什么?怎么知道这个保温茶桶能不能盛150千克的水呢?
2、练习三第6题。
怎么算一枚硬币的体积?
3、练习三第7题。
先估计这两个圆柱的体积,指出哪一个大,再计算它们的体积,验证前面的估计。(如有困难,可以动手操作,实践一下。)
4、练习三第8题。
引导学生思考:根据底面周长先求出底面积,再求容积。
5、练习三第9题。
出示一个圆柱形茶杯,讨论:要知道它的容积,需要量出什么数据,怎么量?学生动手测量、计算。
四、作业:基础训练。
第六课时:圆柱表面积和体积的练习课
教学内容:练习三第10~16题、思考题、动手做。
教学目标:
1、使学生在具体的解决问题情境中,进一步体会底面积、侧面积、表面积和容积这些概念的联系和区别,积累解决问题的方法和经验。
2、提高学生应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点:运用圆柱体积公式解决实际问题。
教学难点:根据实际情况运用圆柱体积公式解决实际问题。
一、复习回顾,理清思路。
1、回顾复习。新-课-标-第-一-网
教师谈话:用一句话介绍前面几节课学习的关于圆柱的知识。
预设学生回答:圆柱的体积计算;圆柱的特征;圆柱表面积的计算方法和各种情况。
2、理清思路。
同桌说说计算圆柱体积的步骤,先算出底面积,再算出圆柱的体积;
同桌说说计算圆柱表面积的步骤,先算出底面积和侧面积,再算出圆柱的表面积;
3、揭示课题——圆柱表面积和体积的练习课。
二、基本练习,形成技能。
1、练习三第10题。
根据表中的已知分别计算每个圆柱的未知量。学生独立完成。
2、练习三第11题。
学生读题,理解题意。注意分清3个小问题分别求什么问题。
3、练习三第12题。
引导思考:第1个问题求水池里最多能蓄水多少吨,要从体积入手;第2个问题要弄清楚求的是几个面的面积之和。
4、练习三第13题。
学生读题,分析题意。之后一人板演,全班齐练。评讲时注意后进生的辅导。
5、练习三第14题。
⑴出示题目,理解题目意思。
⑵讨论:塑料薄膜的面积相当于什么?
大棚内的空间相当于什么?
⑶分别怎么算?
引导理解:蔬菜大棚中求需要多少塑料薄膜和空间有多大,分别求圆柱表面积和体积的一半。
6、练习三第15题。
分析:玲玲把一块长方体橡皮泥捏成一个圆柱体虽然形状变了,但什么没变?(体积)
7、练习三第16题。
提问:要求水面高多少分米,要先求什么?(水杯的高)
三、拓展延伸,开阔思维。
1、第19页思考题。
学有余力学生完成。
⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?
⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?
⑶这题还可以怎么想?
让学生明白:上升或下降的水的体积就是那一部分钢材的体积。
2、第19页动手做。
讲解测量方法——在容器里放适量的水,把土豆浸没在水中,测量并记录相关的数据,算出土豆的体积。并且提供一张表格,提示应该记录容器的底面积、放入土豆前的水面高度、放入土豆后的水面高度以及算出的土豆体积。然后是测量与计算,一边操作一边思考应注意什么。如,容器底面积不能直接量得,只能测量底面的半径、直径或周长。测量半径需要确定圆心,测量周长还要计算直径,一般测量直径,既容易量,也便于算。又如,测量底面直径、水面高度都要在容器里面进行,利用容器里面的数据,算出的才是水的体积、土豆的体积。
四、作业:基础训练

文 章来 源莲山 课件 w w
w.5Y k J.cO m
最新教案

点击排行

推荐教案