《方程的根与函数的零点》教案设计

作者:佚名 教案来源:网络 点击数:    有奖投稿

《方程的根与函数的零点》教案设计

文 章
来源 莲山 课件 w w
w.5 Y k J.cOM

《方程的根与函数的零点》教案设计

1、教学设计的理念
本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般的研究策略,进行教学流程的 “再创造”,积极启发学生思考。
2、教学分析
在本节课之前,已经学习了函数概念与性质,研究并掌握了部分基本初等函数,接下来就要研究函数的应用。函数的应用,教材分三步来展开,第一步,建立一般方程与相应的函数的本质联系.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,进一步体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.
3、教学目标
(1)经历函数零点概念生成过程,理解函数的零点与方程的根之间的本质联系;
(2)经历零点存在性定理的发现过程,理解零点存在定理,会判断函数在某区间内是否有零点;
(3)积极培养学生良好的学习习惯,提升数学核心素养。
4、教学重点、难点
教学重点:零点的概念及零点存在性的判定。
教学难点:探究判断函数的零点个数和所在区间的方法。
5、教学过程
环节一:利用一个学生不能求解的方程来创设问题情境,激发学生的求知欲,引导学生将复杂的问题简单化,从已有认知结构出发来思考问题
环节二:建立一元二次方程的根与相应二次函数图象的关系,突出数形结合的思想方法,并引导学生从特殊到一般,得到方程的根与相应函数零点的本质联系
环节三:利用二次函数的图象与性质,从直观到抽象,具体到一般,得到判断函数零点存在的充分条件(即函数的零点存在性定理)
环节四:学会判断函数在某区间内是否存在零点
 
 
教学过程与操作设计:
环节
教学内容设置
师生双边互动

 

 

 

《方程的根与函数的零点》教学设计先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:
方程与函数
方程与函数
方程与函数
       
师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.
 
 

 
 

 
 

 
 

二次函数的零点:
二次函数
     .
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
 
 
 
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
 
师:上述结论推广到一般的一元二次方程和二次函数又怎样?
 
 
环节
教学内容设置
师生双边互动

 
 

 
 

 
 

函数零点的概念:
对于函数,把使成立的实数叫做函数的零点.
 
函数零点的意义:
函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.
即:
方程有实数根函数的图象与轴有交点函数有零点.
 
函数零点的求法:
求函数的零点:
 (代数法)求方程的实数根;
 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
 
 
 
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:
 代数法;
 几何法.
 
环节
教学内容设置
师生互动设计





零点存在性的探索:
(Ⅰ)观察二次函数的图象:
 在区间上有零点______;
_______,_______,
·_____0(<或>).
 在区间上有零点______;
·____0(<或>).
由以上探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
 
生:根据函数零点的意义探索研究二次函数的零点情况,形成结论.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.
环节
教学内容设置
师生互动设计




例1.求函数的零点个数.
问题:
1)你可以想到什么方法来判断函数零点个数?
2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?
 
《方程的根与函数的零点》教学设计
师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
 
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.
6、小结与反馈:说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤.
分享:
0
喜欢
0
赠金笔赠金笔

文 章
来源 莲山 课件 w w
w.5 Y k J.cOM
最新教案

点击排行

推荐教案