第3节实物粒子的波粒二象性第4节 “基本粒子”与恒星演化

作者:佚名 教案来源:网络 点击数:    有奖投稿

第3节实物粒子的波粒二象性第4节 “基本粒子”与恒星演化

本资料为WORD文档,请点击下载地址下载
文 章来
源莲山 课件 w w
w.5 Y k J.Co m 第3节 实物粒子的波粒二象性
第4节 “基本粒子”与恒星演化
学 习 目 标 知 识 脉 络
1.知道实物粒子具有波动性,会计算物质波的波长,知道电子云,初步了解不确定性关系.(重点、难点)
2.初步了解粒子物理学的基础知识.(重点)
3.初步了解恒星的演化.(重点)
4.了解人类认识世界的发展性,体会人类对世界的探究是不断深入的. 
 
德布罗意假设及其实验探索
 
[先填空]
1.德布罗意波
德布罗意提出实物粒子也具有波动性.称这种波为物质波或德布罗意波.
2.物质波的波长、频率与粒子能量、动量的关系
(1)粒子能量E与相应波的频率ν之间的关系为E=hν.
(2)动量p与相应波长λ之间的关系为p=hλ.
3.物质波的实验验证
(1)1927年,戴维孙和革末通过实验首次发现了电子的衍射现象.
(2)1927年,汤姆孙用实验证明,电子在穿过金属片后像X射线一样产生衍射现象,也证实了电子的波动性.
(3)1960年,约恩孙直接做了电子双缝干涉实验,从屏上摄得了类似杨氏双缝干涉图样的照片.
[再判断]
1.电子不但具有粒子性也具有波动性.(√)
2.物质波的波长由粒子的大小决定.(×)
3.物质波的波长和粒子运动的动量有关.(√)
[后思考]
运动着的宏观物体具有波动性,为什么我们很难观察到宏观物体的波动性?
【提示】 由p=hλ得,λ=hp,宏观物体的动量比微观粒子的动量大得多,运动着的宏观物体的波长都很短,而波长越长波动性越明显,所以我们很难观察到宏观物体的波动性.
 
[核心点击]
1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.
2.粒子在空间各处出现的几率受统计规律支配,不要以宏观观点中的波来理解德布罗意波.
3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.
 
1.(多选)以下说法正确的是(  )
A.宏观粒子也具有波动性
B.抖动细绳一端,绳上的波就是物质波
C.物质波也是一种概率波
D.物质波就是光波
【解析】 任何物体都具有波动性,故A正确.对宏观物体而言,其波动性难以观测,我们所看到的绳波是机械波,不是物质波,故B错误.物质波与光波一样,也是一种概率波,即粒子在各点出现的概率遵循波动规律,但物质波不是光波,故C正确,D错误.
【答案】 AC
2.如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等.
【解析】 由λ=hp可知,如果一个电子和一个中子的德布罗意波长相等,则它们的动量p相等.
【答案】 动量
3.质量为10 g、速度为300 m/s在空中飞行的子弹,其德布罗意波长是多少?为什么我们无法观察出其波动性?
【解析】 子弹在空中飞行时的动量
p=mv=10×10-3×300 kg•m/s=3 kg•m/s
子弹的德布罗意波长为
λ=hp=6.63×10-343 m=2.21×10-34 m
由于子弹的德布罗意波长极短,故无法观察到其波动性.
【答案】 2.21×10-34 m 由于子弹的德布罗意波长极短,无法观察到其波动性
 
有关德布罗意波计算的一般方法
(1)计算物体的速度,再计算其动量.如果知道物体动能也可以直接用p=2mEk计算其动量.
(2)根据λ=hp计算德布罗意波长.
(3)需要注意的是:德布罗意波长一般都很短,比一般的光波波长还要短,可以根据结果的数量级大致判断结果是否合理.
(4)宏观物体的波长小到可以忽略,其波动性很不明显.
 
 
不确定性关系及电子云
 
[先填空]
1.在微观世界中,粒子的位置和动量存在不确定性,不能同时测量.
2.不确定性关系:ΔxΔp≥h4π.
式中,Δx为位置的不确定范围,Δp为动量的不确定范围,h为普朗克常量.
3.此式表明,不能同时精确测定一个微观粒子的位置和动量.
4.电子云
(1)定义
在原子核周围用点的疏密表示的电子出现的概率分布.
(2)电子的分布
某一空间范围内电子出现概率大的地方点密,电子出现概率小的地方点疏.电子云反映了原子核外电子位置的可能性.
[再判断]
1.无论宏观世界还是微观世界,粒子的位置都是确定的.(×)
2.我们可以根据电子的运动轨迹判断电子的出现位置.(×)
3.微观世界中不可以同时测量粒子的动量和位置.(√)
[后思考]
在微观物理学中,我们不可能同时准确地知道某个粒子的位置和动量,那么粒子出现的位置是否就是无规律可循的?
【提示】 粒子出现的位置还是有规律可循的,那就是统计规律,比如干涉、衍射的亮斑位置就是粒子出现概率大的位置.
 
[核心点击]
1.粒子位置的不确定性:单缝衍射现象中,入射的粒子有确定的动量,但它们可以处于挡板左侧的任何位置,也就是说,粒子在挡板左侧的位置是完全不确定的.
2.粒子动量的不确定性
(1)微观粒子具有波动性,会发生衍射.大部分粒子到达狭缝之前沿水平方向运动,而在经过狭缝之后,有些粒子跑到投影位置以外.这些粒子具有与其原来运动方向垂直的动量.
(2)由于哪个粒子到达屏上的哪个位置是完全随机的,所以粒子在垂直方向上的动量也具有不确定性,不确定量的大小可以由中央亮条纹的宽度来衡量.
3.位置和动量的不确定性关系:ΔxΔp≥h4π
由ΔxΔp≥h4π可以知道,在微观领域,要准确地确定粒子的位置,动量的不确定性就更大;反之,要准确地确定粒子的动量,那么位置的不确定性就更大.
4.微观粒子的运动没有特定的轨道:由不确定关系ΔxΔp≥h4π可知,微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨迹”的观点来描述粒子的运动.
5.经典物理和微观物理的区别
(1)在经典物理学中,可以同时用位置和动量精确地描述质点的运动,如果知道质点的加速度,还可以预言质点在以后任意时刻的位置和动量,从而描绘它的运动轨迹.
(2)在微观物理学中,不可能同时准确地知道粒子的位置和动量.因而也就不可能用“轨迹”来描述粒子的运动.但是,我们可以准确地知道大量粒子运动时的统计规律.
 
4.(多选)关于不确定性关系Δx•Δp≥h4π有以下几种理解,正确的是(  ) 【导学号:64772067】
A.微观粒子的动量不可确定
B.微观粒子的位置不可确定
C.微观粒子的动量和位置不可同时确定
D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于宏观物体
【解析】 由ΔxΔp≥h4π可知,当粒子的位置不确定性小时,粒子动量的不确定性大;反之,当粒子的位置不确定性大时,粒子动量的不确定性小.故不能同时测量粒子的位置和动量,故A、B错,C对.不确定性关系是自然界中的普遍规律,对微观粒子的影响显著,对宏观物体的影响可忽略,故D正确.
【答案】 CD
5.已知h4π=5.3×10-35 J•s,试求下列情况中速度测定的不确定量.
(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m.
(2)电子的质量m=9.0×10-31 kg,测定其位置的不确定量为10-10 m.(即在原子的数量级)
【解析】 (1)m=1.0 kg,Δx1=10-6 m,
由ΔxΔp≥h4π,Δp=mΔv知
Δv1=h4πΔ1xm=5.3×10-3510-6×1.0 m/s=5.3×10-29 m/s.
(2)me=9.0×10-31 kg,
Δx2=10-10 m
Δv2=h4πΔx2me
=5.3×10-3510-10×9.0×10-31 m/s
=5.89×105 m/s.
【答案】 (1)5.3×10-29 m/s (2)5.89×105 m/s
 
对不确定性关系的三点提醒
(1)在宏观世界中物体的质量与微观世界中粒子的质量相比较,相差很多倍.
(2)根据计算的数据可以看出,宏观世界中的物体的质量较大,位置和速度的不确定量较小,可同时较精确地测出物体的位置和动量.
(3)在微观世界中粒子的质量较小,不能同时精确地测出粒子的位置和动量,不能准确把握粒子的运动状态.
 
 
“基本粒子”与恒星的演化
 
[先填空]
1.对粒子的认识过程
(1)“基本粒子”:电子、质子和中子.曾认为它们是组成物质的基本粒子,后来又认识到“基本粒子”的复杂内部结构.
(2)新粒子:1932年发现了正电子,1937年发现了μ子,1947年发现k介子和π介子及以后发现的超子等.
2.粒子的分类:已发现的粒子分为媒介子、轻子和强子三类.
3.影响“粒子”的相互作用力
引力、电磁力、强相互作用、弱相互作用.
4.夸克模型
(1)夸克:强子是由夸克构成的.
(2)分类:上夸克、下夸克、粲夸克、奇异夸克、顶夸克、底夸克;它们所带的电荷是电子或质子所带电荷的2/3或1/3.
5.恒星的演化
(1)恒星的形成:大爆炸后,在万有引力作用下形成星云团,进一步凝聚开始发光形成恒星.
(2)恒星的归宿:聚变反应层级递进地在恒星内发生,直到各种热核反应不再发生,恒星的中心密度达到极大,在强大的引力下形成白矮星、中子星或黑洞.
(3)恒星的演化过程:原恒星→主序星(现在太阳正处于此阶段)→红巨星或超新星→白矮星、中子星或黑洞.
[再判断]
1.强子是参与强相互作用的粒子.(√)
2.目前发现的轻子有8种.(×)
3.宇宙将一直会膨胀下去.(×)
[后思考]
星云是怎样形成恒星的?恒星形成时是怎样发光的?恒星在哪个阶段停留时间最长?
【提示】 星云在外界影响下聚集,某些区域在引力作用下开始向内收缩,密度不断增加,星云团中引力势能转化为内能,温度升高.当温度上升到一定程度时,开始发光,形成原恒星.恒星在主序星阶段停留时间最长.
 
[核心点击]
1.新粒子的发现及特点
发现时间 1932年 1937年 1947年 20世纪60年代后
新粒子 反粒子 μ子 K介子与π介子 超子
基本特点 质量与相对应的粒子相同而电荷及其他一些物理性质相反 比质子的质量小 质量介于电子与核子之间 其质量比质子大
2.粒子的分类
分类 参与的相互作用 发现的粒子 备注
强子 参与强相互作用 质子、中子、介子、超子 强子有内部结构,由“夸克”构成;强子又可分为介子和重子
轻子 不参与强相互作用 电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子 未发现内部结构
媒介子 传递各种相互作用 光子、中间玻色子、胶子 光子、中间玻色子、胶子分别传递电磁、弱、强相互作用
3.夸克的分类
夸克有6种,它们是上夸克、下夸克、奇异夸克、粲夸克、底夸克、顶夸克,它们带的电荷是电子或质子所带电荷的23或13.每种夸克都有对应的反夸克.
4.两点提醒
(1)质子是最早发现的强子,电子是最早发现的轻子,τ子的质量比核子的质量大,但力的性质决定了它属于轻子.
(2)粒子具有对称性,有一个粒子,必存在一个反粒子,它们相遇时会发生“湮灭”,即同时消失而转化成其他的粒子.
 
6.(多选)关于粒子,下列说法正确的是(  )
A.电子、质子和中子是组成物质的不可再分的最基本的粒子
B.强子中也有不带电的粒子
C.夸克模型是探究三大类粒子结构的理论
D.夸克模型说明电子电荷不再是电荷的最小单位
【解析】 由于质子、中子是由不同夸克组成的,它们不是最基本的粒子,不同夸克构成强子,有的强子带电,有的强子不带电,故A错误,B正确;夸克模型是研究强子结构的理论,不同夸克带电不同,分别为+23e和-e3,说明电子电荷不再是电荷的最小单位,C错误,D正确.
【答案】 BD
7.在β衰变中常伴有一种称为“中微子”的粒子放出.中微子的性质十分特别,因此在实验中很难探测.1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中11H的核反应,间接地证实了中微子的存在.
(1)中微子与水中的11H发生核反应,产生中子(10n)和正电子( 0+1e),即中微子+11H―→10n+ 0+1e.
可以判定,中微子的质量数和电荷数分别是________.(填写选项前的字母)
A.0和0      B.0和1
C.1和0  D.1和1
(2)上述核反应产生的正电子与水中的电子相遇,与电子形成几乎静止的整体后,可以转变为两个光子(γ),即 0+1e+ 0-1e―→2γ.已知正电子和电子的质量都为9.1×10-31 kg,反应中产生的每个光子的能量约为________J.正电子与电子相遇不可能只转变为一个光子,原因是________.
(3)试通过分析比较,具有相同动能的中子和电子的物质波波长的大小.
【解析】 (1)发生核反应前后,粒子的质量数和电荷数均不变,据此可知中微子的质量数和电荷数都是0,A正确.
(2)产生的能量是由于质量亏损.两个电子转变为两个光子之后,质量变为零,则E=Δmc2,故一个光子的能量为E2,代入数据得E2=8.2×10-14 J.正电子与水中的电子相遇,与电子形成几乎静止的整体,故系统总动量为零,故如果只产生一个光子是不可能的,因为此过程遵循动量守恒定律.
(3)物质波的波长为λ=hp,要比较波长需要将中子和电子的动量用动能表示出来即p=2mEk,因为mn>me,所以pn>pe,故λn<λe.
【答案】 见解析
 
处理新粒子问题的方法
核反应过程中新生成的粒子和实物粒子一样,也能产生物质波,它们之间发生相互作用时,同样遵循动量守恒定律等力学规律,所以应熟练地掌握物理知识和物理规律,并灵活应用.
 
学业分层测评(十五)
(建议用时:45分钟)
学业达标]
1.下列说法中正确的是(  )
A.夸克模型说明电子电荷量是最小的电荷单元
B.目前已经发现了自由态的夸克   
C.目前发现的夸克有8种   
D.每种夸克都有对应的反夸克
【解析】 夸克模型指出目前发现了6种夸克,每种夸克都有对应的反夸克,所以C错误,D正确;夸克所带电荷量小于电子电荷量,但还没有发现自由态的夸克,这就是夸克的“禁闭”,所以A、B错.
【答案】 D
2.关于宇宙和恒星的演化,下列说法正确的是(  )
A.宇宙已经停止演化
B.恒星在主序星阶段时停留时间最长、最稳定
C.当温度达到一定值时,恒星内发生氦聚变,亮度减弱
D.恒星最终都会演化为黑洞
【解析】 目前宇宙的演化仍在进行,A错.恒星在主序星阶段时停留时间最长、最稳定,B对.恒星内由氢聚变转变为氦聚变时,亮度增加,C错.根据最终质量的不同恒星最终演化为白矮星或中子星或黑洞,D错.
【答案】 B
3.(多选)关于物质波,下列认识正确的是(  )
A.任何运动的物体(质点)都伴随一种波,这种波叫物质波
B.X射线的衍射实验,证实了物质波假设是正确的
C.电子的衍射实验,证实了物质波假设是正确的
D.宏观物质尽管可以看成物质波,但它们不具有干涉、衍射等现象
【解析】 据德布罗意物质波理论,任何一个运动的物体,小到电子、质子,大到行星、太阳,都有一种波与之相对应,这种波就叫物质波,可见,A选项正确;由于X射线本身就是一种波,而不是实物粒子,故X射线的衍射现象,并不能证实物质波理论的正确性,故B选项错误;电子是一种实物粒子,电子的衍射现象表明运动着的实物粒子具有波动性,故C选项正确;由电子穿过铝箔的衍射实验知,少量电子穿过铝箔后所落位置是散乱的,无规律的,但大量电子穿过铝箔后所落的位置呈现出衍射图样,即大量电子的行为表现出电子的波动性,干涉、衍射是波的特有现象,只要是波,都会发生干涉、衍射现象,故D选项错误.
【答案】 AC
4.(多选)电子的运动受波动性的支配,对氢原子的核外电子,下列说法正确的是(  )
【导学号:64772068】
A.电子绕核运动的“轨道”其实是没有意义的
B.电子轨道只不过是电子出现的概率比较大的位置
C.电子绕核运动时电子边运动边振动
D.电子在核外的位置是不确定的
【解析】 根据电子的波粒二象性,其在某时刻出现的位置不能确定,但其在某点出现的概率受波动规律支配,所以A、B、D正确,C错误.
【答案】 ABD
5.(多选)光通过单缝所发生的现象,用位置和动量的不确定性关系的观点加以解释,正确的是(  )
A.单缝宽,光是沿直线传播,这是因为单缝宽,位置不确定量Δx大,动量不确定量Δp小,可以忽略   
B.当能发生衍射现象时,动量不确定量Δp就不能忽略
C.单缝越窄,中央亮纹越宽,是因为位置不确定量越小,动量不确定量越大的缘故
D.当发生明显衍射现象时,位置的不确定量Δx不能忽略
【解析】 光在传播过程中的位置和动量的不确定关系为ΔxΔp≥h4π.发生衍射时Δx>0,所以Δp不能忽略,故B对.缝越宽Δp越小,缝越窄Δp越大,所以A、C正确.
【答案】 ABC
6.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是 (  )
A.使光子一个一个地通过双缝干涉实验装置的狭缝,如果时间足够长,底片上将出现双缝干涉图样
B.使光子一个一个地通过双缝干涉实验装置的狭缝,如果时间足够长,底片上将出现不太清晰的双缝干涉图样
C.大量光子的运动规律显示出光的粒子性
D.个别光子的运动显示出光的粒子性
【解析】 单个光子运动具有不确定性,大量光子落点的概率分布遵循一定规律,显示出光的波动性.使光子一个一个地通过双缝,如果时间足够长,底片上会出现明显的干涉图样,A正确,B、C错误;由光的波粒二象性知,个别光子的运动显示出光的粒子性,D正确.
【答案】 AD
7.目前普遍认为,质子和中子都是由被称为u夸克和d夸克的两类夸克组成的,u夸克带电荷量为23e,d夸克的带电荷量为-13e,e为元电荷,那么质子是由____________个u夸克和________个d夸克组成的,中子是由________个u夸克和________个d夸克组成的.
【解析】 质子带电量为e,应由2个u夸克和1个d夸克组成,中子带电量为0,应由1个u夸克和2个d夸克组成.
【答案】 2 1 1 2
8.估算运动员跑步时的德布罗意波长.为什么我们观察不到运动员的波动性?
【解析】 设运动员的质量m=60 kg,运动员跑步时速度约为v=10 m/s,则其德布罗意波长为:
λ=hp=hmv=6.63×10-3460×10 m≈1.1×10-36 m.
这个波长极短,因而观察不到运动员的波动性.
【答案】 见解析
能力提升]
9.(多选)下列说法中正确的是(  )
A.光的波粒二象性,就是由牛顿的微粒说和惠更斯的波动说组成的
B.光的波粒二象性彻底推翻了麦克斯韦的光的电磁说
C.光子说并没有否定光的电磁说,在光子能量ε=hν中,频率ν表示波的特征,ε表示粒子的特征
D.光波和物质波都是概率波
【解析】 牛顿的微粒说认为光是由物质微粒组成的,惠更斯的波动说认为光是机械波,都是从宏观现象中形成的观念,故A错误;光子说并没有否定光的电磁说,光子能量公式ε=hν,体现了其粒子性和波动性,B错误,C正确;光波和物质波都是概率波,D正确.
【答案】 CD
10.(1)如图5­3­1所示是一个粒子源,产生某种粒子,在其正前方安装只有两条狭缝的挡板,粒子穿过狭缝打在前方的荧光屏上使荧光屏发光.那么在荧光屏上将看到________.
 
图5­3­1
(2)一电子具有200 m/s的速率,动量的不确定范围是0.01%,我们确定该电子位置时,有多大的不确定范围?(电子质量为9.1×10-31 kg) 【导学号:64772069】
【解析】 (1)由于粒子源产生的粒子是微观粒子,它的运动受波动性支配,对大量粒子运动到达屏上某点的概率,可以用波的特征进行描述,即产生双缝干涉,在屏上将看到干涉条纹.
(2)由不确定性关系ΔxΔp≥h4π得电子位置的不确定范围Δx≥h4πΔp=6.63×10-344×3.14×9.1×10-31×200×0.01% m=2.90×10-3 m.
【答案】 (1)明暗相间的干涉条纹 (2)2.90×10-3 m
11.如图5­3­2所示为示波管示意图,电子的加速电压U=104 V,打在荧光屏上电子的位置确定在0.1 mm范围内,可以认为令人满意,则电子的速度是否可以完全确定?是否可以用经典力学来处理?电子质量m=9.1×10-31 kg.
 
图5­3­2
【解析】 Δx=10-4 m,由ΔxΔp≥h4π得,动量的不确定量最小值约为Δp≈5×10-31 kg•m/s,其速度不确定量最小值Δv≈0.55 m/s.12mv2=eU=1.6×10-19×104 J=1.6×10-15 J,v=6×107 m/s,Δv远小于v,电子的速度可以完全确定,可以用经典力学来处理.
【答案】 可以完全确定 可以用经典力学来处理 文 章来
源莲山 课件 w w
w.5 Y k J.Co m
最新教案

点击排行

推荐教案