八年级数学上13.1.2线段的垂直平分线的性质(人教版)

作者:佚名 教案来源:网络 点击数:    有奖投稿

八年级数学上13.1.2线段的垂直平分线的性质(人教版)

本资料为WORD文档,请点击下载地址下载
文章来 源
莲山课件 w w
w.5 Y K J.Com

13.1.2 线段的垂直平分线的性质
第1课时 线段的垂直平分线的性质(1)
 

教学目标】
1.理解线段的垂直平分线的性质,会利用线段的垂直平分线的性质进行推理.
2.自己动手探究发现线段的垂直平分线的性质,培养学生的观察、猜想、归纳能力.
3.通过应用线段的垂直平分线的性质进行推理,培养学生几何推理的严密性.
【重点难点】
重点:线段的垂直平分线的性质的运用.
难点:性质2的证明.

教学过程设计┃
教学过程 设计意图
一、创设情境,导入新课
 
在106国道某段的同侧,有两个工厂A,B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂到医院的距离相等,问医院的院址应选在何处?
师生活动:由教师用课件投影问题,学生独立思考,但不要求学生能解答问题. 让学生体会数学来源于生活又服务于生活,感受几何应用美.
二、师生互动,探究新知
1.探究性质1
 
问题:如图,直线l垂直平分线段AB,P1,P2,P3……是l上的点,分别量一量点P1,P2,P3……到A与点B的距离,你有什么发现?
先让学生量一下并猜想P1A与P1B的数量关系,再量一下并猜想P2A与P2B及P3A与P3B的数量关系.
总结归纳发现的规律,分组讨论完成,但讨论时间不宜过长,如果学生不能准确的归纳,教师可以适当提示.
教师把学生总结出来的结论进一步完善,用多媒体展示线段垂直平分线的性质1.
在此基础上把这一命题转化成几何上的证明题(这一步老师亲自完成,学生完成有困难)
老师巡视并找1个学生的证明过程用多媒体展示给学生,并根据证明过程全体师生进行分析指正.
指正证明过程后,全体学生针对自己的证明过程查找不足,以后改正.
已知:如图,直线l⊥AB,垂足为C,AC=CB,点P在l上.
 
求证:PA=PB.
证明完成后,老师用多媒体展示线段垂直平分线的性质应用时的符号语言(即解题时的书写步骤),并强调学生注意.
2.探究性质2
问题:把线段垂直平分线的性质1反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?
老师提出问题,并让学生大胆猜想点P在线段AB的垂直平分线上.
老师直接把命题转化成几何的证明题形式;
已知线段AB,点P是平面内一点,且PA=PB.
求证:P点在线段AB的垂直平分线上.
老师引导学生探究证明方法. 观察、猜想、归纳并验证是数学学习的一种重要方法,通过这一活动可以提高学生观察、猜想及归纳的能力.


线段垂直平分线的性质转化成几何证明过程是个难点,并不需要学生掌握,所以这一过程由老师完成.老师巡视完后可以用多媒体展示多少有点问题的证明过程,在分析的过程中让学生学会严密的证明方法.


这是本节的难点,“P点在线段AB的垂直平分线上”太抽象,既看不到又不好解决“在”的问题.所以老师引导学生探究解决.最后由老师直接归纳.
四、课堂小结,提炼观点
1.这节课你学到了哪些知识?
2.你觉得这些知识在具体的题目中如何运用?
3.你还有哪些困惑? 通过学生交流,使学生明确本节知识的同时,培养学生的总结归纳能力,形成随时反思的意识.
五、布置作业,巩固提升
教材第65、66页第6、9题. 


【板书设计】
线段的垂直平分线的性质(1)
性质1:
线段垂直平分线上的点与这条线段两个端点的距离相等.
 
用符号语言表示为:
∵PC垂直平分AB(CA=CB,PC⊥AB),∴PA=PB. 性质2:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
用符号语言表示为:
∵PA=PB,
∴点P在线段AB的垂直平分线上.
【教学反思】
这节课在设计过程中有几个特色:
1.每个探究活动都能至少针对一个教学目标,各探究衔接自然,前后呼应.
2.活动中多媒体展示学生的解答过程,既有利于提高学生解题的严密性,又能充分利用多媒体资源.
 

第2课时 线段的船只平分线的性质(2)


【教学目标】
1.会画线段的垂直平分线和过直线外一点作已知直线的垂线.
2.进一步理解线段的垂直平分线的性质,能够确定两个图形成轴对称的对称轴.
3.通过线段的垂直平分线的画法的学习进一步培养学生的画图能力.
【重点难点】
重点:线段的垂直平分线的作法.
难点:探索轴对称图形对称轴的作法.

┃教学过程设计┃
教学过程 设计意图
一、复习引入
问题1:(1)什么是线段的垂直平分线?
(2)线段的垂直平分线有哪些性质?
(3)轴对称图形的性质是什么?
学生思考回答. 通过复习,让学生明确轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,要准确作出图形的对称轴,就应会作线段的垂直平分线,激发学生的求知欲望.
二、师生互动,探究新知
两个成轴对称的图形,不经过折叠,你用什么方法画出它的对称轴?
1.垂直平分线的作图
学生自学课本63页,要求学生在练习本上作出图形.
已知:线段AB(如图1).
求作:线段AB的垂直平分线.
作法:(1)如图2,分别以点A,B为圆心,以大于12AB的长为半径作弧,两弧相交于C和D两点;
 
图1       图2
(2)作直线CD.
直线CD就是线段AB的垂直平分线.
思考1:在上述作法中,为什么要以“大于12AB的长”为半径作弧?
思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.
老师进行小结.
2.作轴对称图形的对称轴
师:同学们不要忘了,我们作线段的垂直平分线是为了什么?
生:是为了作出轴对称图形的对称轴.
师:那怎样作出一个轴对称图形的对称轴呢?
生:我们只要找到任意一对对应点,作出这对对应点连线的垂直平分线,就可以得到此图形的对称轴.
老师给出例题练习运用.
3.过一点作已知直线的垂线
师:刚才我们学习了作线段的垂直平分线,那么如何过已知点作一条直线的垂线呢?
点和直线有几种位置关系?
生:2种.一种是点在直线上,一种是点在直线外.
老师出示问题让学生自行解决. 学生通过自学和交流,明确作法,然后动手作图,使学生熟练掌握线段垂直平分线的作图方法,落实第一个教学目标.

通过追问,让学生逐步熟悉尺规作图的表示方法,逐步会用简洁的几何语言表示作图过程.

 

让学生通过例题,规范对称轴的作图,并进一步理解轴对称图形的性质,知道有些图形的对称轴不止一条.

本部分难度较大,先让学生自学,不明白的地方教师适当点拨和示范,最后由学生完成作图.
三、运用新知,解决问题
 
如图,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,若要使厂部到A,B的距离相等,则应选在哪里?
学生独立完成作图. 
 

让学生体会线段垂直平分线在实际问题中的应用,同时让学生熟练掌握线段垂直平分线的尺规作图.
四、课堂小结,提炼观点
本节课你学到了什么? 通过知识的梳理,让学生进一步明确本节所学内容,落实学习目标,培养学生及时总结和反思的习惯.
五、布置作业,巩固提升
教材第64页第2题,第65页第7、8题. 


【板书设计】
线段的垂直平分线的性质(2)
1.线段垂直平分线的作图
2.过一点作已知直线的垂线
【教学反思】
本节课从复习线段的垂直平分线的定义和轴对称的性质切入,学习了线段的垂直平分线的作图,并利用线段的垂直平分线的作图解决生活中的位置的确定问题,同时,把上节课的“过一点作已知直线的垂线”的尺规作图移到本节课完成,通过这两种尺规作图的集中讲解和学生的亲自动手作图,使学生对尺规作图的要求有了进一步的认识.

文章来 源
莲山课件 w w
w.5 Y K J.Com
最新教案

点击排行

推荐教案