八年级下册《生物的遗传与变异》学案2冀教版

作者:佚名 教案来源:网络 点击数:    有奖投稿

八年级下册《生物的遗传与变异》学案2冀教版

文 章来
源莲山 课件 w w
w.5 Y k J.Co m

八年级下册《生物的遗传与变异》学案2冀教版


遗传
科技名词定义
中文名称:
遗传
英文名称:
heredity;inheritance;1 heredity 2 inheritance定义1:
生物世代之间的连续性和相似性。
所属学科:
水产学(一级学科) ;水产生物育种学(二级学科)
定义2:
(1)性状由亲代向子代传递的现象。(2)性状由亲代向子代传递的过程。所属学科:
遗传学(一级学科) ;总论(二级学科)
本内容由全国科学技术名词审定委员会审定公布
 词目:遗传
  拼音:yí chuán
  词义:
  遗传是指经由基因的传递,使后代获得亲代的特征。遗传学是研究此一现象的学科,目前已知地球上现存的生命主要是以DNA作为遗传物质。除了遗传之外,决定生物特征的因素还有环境,以及环境与遗传的交互作用。
基本解释
  1. [heredity]通过细胞染色体由祖先向后代传递的品质
  遗传学
  2. [inheritance]先人所流传下来的
详细解释
  1. 犹留传。
  《史记·扁鹊仓公列传》:“ 庆 有古先道遗传 黄帝 、 扁鹊 之脉书,五色诊病,知人生死。” 宋 林逋 《伤白积殿丞》诗:“遗传得谁脩阙下,孤坟应祇客江边。”《二刻拍案惊奇》卷十八:“这迷而不悟,却是为何?只因制造之药,其方未尝不是仙家的遗传。” 罗家伦 《是爱情还是苦痛》:“他说:‘我听得长辈说,女子总是靠丈夫的。’我好容易收来一点爱情,把他这一句遗传的话,又吓走了一大半。”
  2. 指遗留下来的传闻。
  北魏 郦道元 《水经注·易水》:“余按遗传,旧迹多在 武阳 ,似不饯此也。” 明 李诩 《戒庵老人漫笔·陈同父<中兴遗传>》:“自是始欲纂集异闻,为《中兴遗传》,然犹恨闻见单寡,欲从先生故老详求其事。”
  3. 谓生物体的构造和生理机能由上一代传给下一代。
  艾思奇 《辩证唯物主义历史唯物主义》第四章:“在自然界中,吸引和排斥,阴电和阳电,化合和分解,遗传和变异等对立面的互相作用,也同样包含着斗争。”如:任何一种植物的后代与它的亲代总是基本相似的,这种现象叫做遗传。
  4. 谓人的气质、品德、能力等后天的东西受上代的影响而在后代身上体现出来。
  洪深 《电影戏剧的编剧方法》第四章:“即以气质而论,决不是一个人遗传有好的或坏的气质。” 郁达夫 《出奔》:“结婚之后的 董婉珍 ,处处都流露了她的这一种自父祖遗传下来的小节的伶俐。” 陈学昭 《工作着是美丽的》上卷二四:“在精明能干这一点上,她的三个孩子都得了母亲的优良遗传。”
  遗传:幸福在某种程度上是与生俱来的。人类“幸福感知点”的敏感程度有90%是由基因决定的,同时也取决于父母的正确见识、判断力以及良好的训练和教育。
特点
  遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:[1]
  1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。
  2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
  3、 遗传算法使用多个点的搜索信息,具有隐含并行性。
  4、 遗传算法使用概率搜索技术,而非确定性规则。
应用
概述
  由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:
1、 函数优化
  函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
2、 组合优化
  随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求

遗传与生育
这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
  此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
现状
  进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
  

儿童孤独症可能来自遗传
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的只能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
  

遗传
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
  D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
  H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
  

遗传
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
  2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
  2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
一般算法
  

遗传
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法是基于生物学的,理解或编程都不太难。

文 章来
源莲山 课件 w w
w.5 Y k J.Co m
最新教案

点击排行

推荐教案